Инженерная подготовка. взрывчатые вещества

Содержание:

Класс 4. Легковоспламеняющиеся вещества и материалы

Легковоспламеняющиеся вещества и материалы, кроме классифицированных как взрывчатые, способные во время перевозки легко загораться от внешних источников воспламенения, в результате трения, поглощения влаги, самопроизвольных химических превращений, а также при нагревании.

Подкласс 4.1 Легковоспламеняющиеся твёрдые вещества

К классу 4.1 относятся легковоспламеняющиеся вещества и изделия, десенсибилизированные взрывчатые вещества, являющиеся твердыми веществами, и самореактивные жидкости или твердые вещества. Легковоспламеняющимися твердыми веществами являются твердые вещества, способные легко загораться, и твердые вещества, способные вызвать возгорание при трении. Твердыми веществами, способными легко загораться, являются порошкообразные, гранулированные или пастообразные вещества, которые считаются опасными, если они могут легко загораться при кратковременном контакте с источником зажигания, таким, как горящая спичка, и если пламя распространяется быстро. Опасность может исходить не только от пламени, но и от токсичных продуктов горения. Особенно опасны в этом отношении порошки металлов, так как погасить пламя в этом случае трудно из-за того, что обычные огнетушащие вещества, такие, как диоксид углерода или вода, могут усугубить опасность.

Символ (пламя) — черный. Фон — белый с семью вертикальными красными полосами. Цифра «4» в нижнем углу.

Дополнительная информация о подклассе

Твердые десенсибилизированные взрывчатые вещества — это вещества, которые смочены водой или спиртами либо разбавлены другими веществами для подавления их взрывчатых свойств. Самореактивными веществами являются термически неустойчивые вещества, способные подвергаться бурному экзотермическому разложению даже без участия кислорода (воздуха). Некоторые самореактивные вещества могут перевозиться только в условиях регулирования температуры. Для обеспечения безопасности во время перевозки самореактивные вещества во многих случаях десенсибилизируются путем использования разбавителя.

Подкласс 4.2 Вещества, способные к самовозгоранию

К классу 4.2 относятся:

  • пирофорные вещества — вещества, включая смеси и растворы (жидкие или твердые), которые даже в малых количествах воспламеняются при контакте с воздухом в течение пяти минут; эти вещества класса 4.2 наиболее подвержены самовозгоранию;
  • самонагревающиеся вещества и изделия — вещества и изделия, включая смеси и растворы, которые при контакте с воздухом без подвода энергии извне способны к самонагреванию. Эти вещества воспламеняются только в больших количествах (килограммы) и лишь через длительные периоды времени (часы или дни). Причиной самонагревания этих веществ, приводящего к самовозгоранию, является реакция вещества с кислородом (содержащимся в воздухе), при которой выделяемое тепло не отводится достаточно быстро в окружающую среду.

Символ (пламя) — черный. Фон — верхняя половина белая, нижняя — красная. Цифра «4» в нижнем углу.

Подкласс 4.3 Вещества, выделяющие легковоспламеняющиеся газы при соприкосновении с водой

К классу 4.3 отнесены вещества, которые при реагировании с водой выделяют легковоспламеняющиеся газы, способные образовывать с воздухом взрывчатые смеси, а также изделия, содержащие такие вещества. Некоторые вещества при соприкосновении с водой могут выделять легковоспламеняющиеся газы, способные образовывать взрывчатые смеси с воздухом. Такие смеси легко воспламеняются от любых обычных источников зажигания, например открытого огня, искр слесарных инструментов или незащищенных электрических ламп. Образующиеся в результате этого взрывная волна и пламя могут создать опасность для людей и окружающей среды.

Символ (пламя) — черный или белый. Фон — синий. Цифра «4» в нижнем углу.

ФСБ показало взрывчатку, изъятую у украинских диверсантов

ФСБ опубликовало видео со взрывчаткой, найденной у группы украинских диверсантов, задержанных на территории Крыма. В ночь на 8 августа подразделения спецназа Вооруженных сил Украины предприняли попытку прорваться на полуостров под прикрытием огня с украинской стороны. В перестрелке погиб один военнослужащий Министерства обороны России. Еще одна диверсионная группа была обнаружена в ночь на 7 августа в районе Армянска, при ее задержании был убит сотрудник ФСБ. У задержанных обнаружили большое количество самодельных взрывных устройств, мин, гранаты, боеприпасы, оружие и амуницию.

Капризный конкурент

В последней четверти XIX века пироксилином стали снаряжать артиллерийские снаряды, морские торпеды и мины. Однако с появлением тротила и мелинита пироксилин довольно быстро сошел с арены. Но почему? Дело в том, что при всех его положительных качествах пироксилин все же значительно уступает мелиниту, а особенно тротилу в удобстве использования, безопасности и сохранности.

Прежде всего, пироксилин весьма капризен в отношении влажности. При влажности около 50% и более он полностью теряет взрывные свойства. С другой стороны, когда содержание влаги падает ниже 3%, пироксилин «пересыхает» и начинает разлагаться. При влажности 5−7% пироксилин охотно взрывается от стандартного капсюля-детонатора №8, при 10−30% для взрыва требуется промежуточный детонатор — шашка из пироксилина, имеющего влажность 5−7%. Столь сильная зависимость взрывчатки от влажности требовала постоянного и тщательного контроля и создания специальных условий. Даже в складских условиях эта задача весьма непроста: нужны теплые помещения с хорошей вентиляцией, с осушителями воздуха, что во фронтовых условиях обеспечить зачастую невозможно.

Частично из положения выходили так: после изготовления шашки доводили до требуемой влажности, а затем тщательно покрывали слоем парафина. Однако и в этом случае требовался тщательный контроль. Зависимость пироксилина от влажности сыграла злую шутку с российской эскадрой, в 1905 году шедшей из Кронштадта на выручку осажденному японцами Порт-Артуру.

Метательные взрывчатые вещества, или пороха

Для этих веществ характерным видом взрывного превращения является горение, не переходящее в детонацию даже при высоких давлениях, которое развивается в условиях выстрела. Эти вещества используются для сообщения пуле или снаряду движения в канале ствола оружия и для сообщения движения ракетным снарядам.

Для возбуждения горения порохов необходимо действие на них пламени.

Пороха разделяются на две группы: пороха – механические смеси (и как разновидность — твердые ракетные топлива) и пороха на основе нитроклетчатки.

1. Пороха – механические смеси. До недавнего времени из этой группы веществ наиболее значительное практическое применение находил дымный (черный или охотничий) порох. Черный порох был изобретен в Китае 800 г. до н.э. Дымный порох состоит из гранул темно-зеленого или черного цвета. Он состоит из 75 % селитры (чаще калийной КNO3), 10-12 % угля и 12-16 % серы. Воспламеняется при температуре 270 – 300С, развивает температуру при взрыве 2200С, скорость горения до 300 м/с и давление до 6000 атмосфер.Горение черного пороха можно представить следующим уравнением: 2KNO3+ 3C+SN2+ 3CO2+K2S(тв)

При горении пороха селитра разлагается с выделением кислорода. Этот кислород необходим для горения угля и серы, которые играют роль горючего. Сера, кроме этого, является цементатором – цементирует частица угля и селитры.

Дымный порох мало чувствителен к удару, но очень чувствителен к пламени, он загорается в результате воздействия даже незначительной искры. Известны случаи воспламенения пороха в результате образовавшейся фрикционной искры от трения обуви с металлическими гвоздями о цементный пол. Порох воспламеняется при соприкосновении с пламенем, раскаленными телами, электрической искрой при нагревании до 270С, фрикционных искр. Самопроизвольно порох может взрываться только в том случае, если селитра содержит примеси хлора. Чувствительность пороха значительно уменьшается в присутствии влаги. При содержании влаги 15 % порох теряет способность к воспламенению.

Небольшие примеси жиров (2-10 %) понижают воспламеняемость пороха и замедляют сгорание. Препятствуют взрыву пороха и негорючие добавки, например, стеклянный порошок и тонкоразмолотый песок.

Ракетные топлива– твердосмесевые и пиротехнические топлива – представляют собой смеси окислителей, горючих и связующих веществ.

В качестве окислителей используется аммиачная селитра NH4NO3, перхлорат аммония NH4ClO4 и перхлорат калия КClO4. Связующими веществами являются асфальтовый битум, каучуки, карбамидные и фенолформальдегидные смолы, виниловые полимеры, полиэфиры и нитроцеллюлоза. В качестве горючего также используется алюминиевая пыль. Такое топливо может содержать, например, 70 % NH4ClO4, 10 % алюминия Al в порошке, 19 % каучуков или смол, 1 % специальных добавок. Горение смесевых твердых топлив часто переходит в детонацию. Кроме того, выделяющаяся энергия значительно превосходит энергию сгорания дымного пороха.

2. Нитроцеллюлозные пороха. Их основой являются нитраты целлюлозы, пластифицированные каким-либо растворителем. Пироксилиновые порохаизготавливаются таким способом, что летучий растворитель (пластификатор) по завершении процесса в значительной мере удаляется из пороховой массы.

Баллиститы– нитроцеллюлозные пороха, изготавливаемые с применением нелетучего растворителя, полностью остающегося в порохе. В зависимости от применяемого растворителя баллиститы называются нитроглицериновыми, нитродигликолевыми и т.д.

Кордиты — нитроцеллюлозные пороха, изготавливаемые на смешанном растворителе – летучем и нелетучем (например, глицерин с ацетоном).

Самовозгорание порохов обычно приводит к пожару, т.к. загоревшиеся пороха не детонируют. Категорически запрещено совместное хранение бризантных ВВ и пороха, загорание последнего может вызвать горение и последующую детонацию ВВ.

Признаки разложения порохов на основе нитроцеллюлозы:

  1. Изменение цвета пороховых элементов. Появление на их поверхности желто-бурых пятен.
  2. Повышение температуры пороха.
  3. Появление запахов оксидов азота.

При появлении данных признаков необходимо срочно удалить начинающий разлагаться порох из хранилища и уничтожить его. Если удалить порох невозможно, его необходимо интенсивно поливать водой. Тушить пороха водой огнетушителем или компактной струей обычно не удается. Вследствие сильного пламени при горении пороха его тушение в присутствии людей всегда связано с большим риском. Тушение порохов должно производиться с помощью автоматически действующих дренчерных или спринклерных устройств. При загорании больших количеств пороха работающие в помещении должны немедленно его покинуть.

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

Начало в жидком виде

История современных взрывчатых веществ начинается в 1846 году, когда итальянский ученый Асканио Собреро впервые получил нитроглицерин — сложный эфир глицерина и азотной кислоты. Собреро достаточно быстро обнаружил взрывчатые свойства бесцветной вязкой жидкости и потому поначалу назвал полученное соединение пироглицерином.

Альфред Нобель — человек, создавший динамит.
Трехмерная модель молекулы нитроглицерина.

По современным представлениям нитроглицерин — весьма посредственная взрывчатка. В жидком состоянии он слишком чувствителен к удару и нагреву, а в твердом (охлажденном до 13°С) — к трению. Фугасность и бризантность нитроглицерина сильно зависят от способа инициирования, а при использовании слабого детонатора мощность взрыва сравнительно невелика. Но тогда это было прорывом — мир еще не знал подобных веществ.

Практическое использование нитроглицерина началось лишь спустя семнадцать лет. В 1863 году шведский инженер Альфред Нобель конструирует пороховой капсюль-воспламенитель, позволяющий использовать нитроглицерин в горном деле. Спустя еще два года, в 1865 году, Нобель создает первый полноценный капсюль-детонатор, содержащий фульминат ртути. При помощи такого детонатора можно инициировать практически любое бризантное взрывчатое вещество и вызвать полноценный взрыв.

В 1867 году появляется первая взрывчатка, пригодная для безопасного хранения и транспортировки, — динамит. Девять лет потребовалось Нобелю на то, чтобы довести технологию производства динамита до совершенства — в 1876 году был запатентован раствор нитроцеллюлозы в нитроглицерине (или «гремучий студень»), который до сегодняшнего дня считается одним из самых мощных взрывчатых веществ бризантного действия. Именно из этого состава готовился знаменитый динамит Нобеля.

Выдающийся химик и инженер Альфред Нобель, фактически изменивший лицо мира и давший реальный толчок развитию современной военной и, косвенно, космической технике скончался в 1896 году, прожив 63 года. Имея слабое здоровье, он так увлекался работой, что часто забывал поесть. На каждом из его заводов строилась лаборатория, чтобы неожиданно приехавший хозяин мог продолжить эксперименты без малейшей задержки. Он был и генеральным директором своих заводов, и главным бухгалтером, и главным инженером и технологом, и секретарем. Жажда познания была основной чертой его характера: «Вещи, над которыми я работаю, действительно чудовищны, но они так интересны, так совершенны технически, что становятся привлекательными вдвойне».

Класс 5. Окисляющие вещества и органические пероксиды

Окисляющие вещества и органические пероксиды, которые способны легко выделять кислород, поддерживать горение, а также могут, в соответствующих условиях или в смеси с другими веществами, вызвать самовоспламенение и взрыв.

Подкласс 5.1 Окисляющие вещества

К классу 5.1 отнесены вещества, которые, сами по себе необязательно являясь горючими, могут, обычно путем выделения кислорода, вызывать или поддерживать горение других материалов, а также изделия, содержащие такие вещества. Вещества и изделия, отнесенные к классу 5.1, перечислены в перечне опасных грузов. Отнесение веществ и изделий, не указанных по наименованию, к соответствующей позиции может осуществляться на основе предусмотренных испытаний, методов и критериев и в Руководстве по испытаниям и критериям, часть III, раздел 34.4. В случае несоответствия результатов испытаний практическому опыту при принятии решения в первую очередь учитывается практический опыт.

Символ (пламя над окружностью) — черный. Фон — желтый. Цифры «5.1» в нижнем углу.

Дополнительная информация о подклассе

Окисляющим твердым веществам, отнесенным к различным позициям, назначается группа упаковки I, II или III на основе процедур испытания в соответствии с Руководством по испытаниям и критериям, часть III, раздел 34.4.1. Окисляющим жидким веществам, отнесенным к различным позициям в таблице A главы 3.2, назначается группа упаковки I, II или III на основе процедур испытания в соответствии с Руководством по испытаниям и критериям, часть III, раздел 34.4.2 . При отнесении окисляющих жидких веществ, не указанных по наименованию в таблице A главы 3.2, к одной из позиций, перечисленных в подразделе 2.2.51.3, на основе процедуры испытания в соответствии с Руководством по испытаниям и критериям, часть III, подраздел 34.4.2

Подкласс 5.2 Органические пероксиды

К классу 5.2 отнесены органические пероксиды и составы органических пероксидов. Органические пероксиды — это органические вещества, которые содержат двухвалентную структуру -О-О- и могут рассматриваться в качестве производных продуктов пероксида водорода, в котором один или оба атома водорода замещены органическими радикалами.

Символ (пламя над окружностью) — черный. Фон — желтый. Цифры «5.2» в нижнем углу.

Дополнительная информация о подклассе

Органические пероксиды склонны к экзотермическому разложению при нормальной или повышенной температуре. Разложение может начаться под воздействием тепла, контакта с примесями (например, кислотами, соединениями тяжелых металлов, аминами), трения или удара. Скорость разложения возрастает с увеличением температуры и зависит от состава органического пероксида. Разложение может приводить к образованию вредных или легковоспламеняющихся газов или паров. Определенные органические пероксиды надлежит перевозить при регулировании температуры. Некоторые из органических пероксидов могут разлагаться со взрывом, особенно в замкнутом пространстве. Это свойство можно изменить путем добавления растворителей или использования соответствующей тары. Многие органические пероксиды интенсивно горят. Надлежит избегать попадания органических пероксидов в глаза. Некоторые органические пероксиды даже при непродолжительном контакте приводят к серьезной травме роговой оболочки глаз или разъедают кожу. Органические пероксиды подразделяются на семь типов согласно степени опасности, которую они представляют. Органические пероксиды ранжированы от типа A — пероксиды, которые не допускаются к перевозке в таре, в которой они испытываются, до типа G — пероксиды, на которые не распространяются положения класса 5.2.

Дмитрий Рогозин не хочет передавать «Ростеху» химический завод

Как стало известно «Ъ», вице-премьер Дмитрий Рогозин выступил против передачи «Ростеху» базового предприятия боеприпасной отрасли — Завода им. Свердлова. Глава госкорпорации Сергей Чемезов предлагал включить его в состав центра малотоннажной химии, создаваемого в холдинге «РТ-Химкомпозит», но вице-премьеру удалось убедить Владимира Путина от этой идеи отказаться. Отдавать в ведение госкорпорации монопольного производителя взрывчатых веществ типа гексогена и октогена господин Рогозин посчитал нецелесообразным.

Создать центр малотоннажной химии (ЦМХ) предложил гендиректор «Ростеха» Сергей Чемезов в письме президенту Владимиру Путину в апреле этого года. По данным «Интерфакса», глава госкорпорации просил одобрить передачу «Ростеху» четырех профильных государственных институтов и предприятий: Российского научного (Санкт-Петербург), ФГУП «Научно-исследовательский институт полимеров им. В. А. Каргина» (Нижний Новгород), ОАО «Институт пластмасс им. Г. С. Петрова» (Москва) и ФКП «Завод им. Я. М. Свердлова» (Дзержинск). Схема подразумевала преобразование четырех предприятий в акционерные общества с последующей передачей их акций «Ростеху» в качестве имущественного взноса РФ. Владимир Путин эту идею поддержал, поручив правительству оказать «Ростеху» необходимое содействие. Письмо было перенаправлено вице-премьеру Аркадию Дворковичу, курирующему химическую промышленность, говорит источник «Ъ» в аппарате правительства. «Он распорядился проработать вопрос передачи активов «Ростеху» в Минэкономики, Минобрнауки, Минпромторге и Минфине»,— уточнил собеседник «Ъ», подчеркнув, что по итогам обсуждения у ведомств вопросов не возникло.

Как Минобороны поделится c «Ростехом» оружием

Однако в ситуацию вмешался вице-премьер Дмитрий Рогозин. По сведениям «Ъ», копия письма Сергея Чемезова попала к нему из-за того, что Завод им. Свердлова является базовым предприятием в производстве боеприпасов, за которое отвечает господин Рогозин. Вскоре целесообразность предложения господина Чемезова рассмотрела коллегия Военно-промышленной комиссии. По словам источника «Ъ» в правительстве, передача трех гражданских химических предприятий «Ростеху» нареканий у вице-премьера не вызвала: компетенции перечисленных в письме институтов были нужны госкорпорации для полноценного развития ЦМХ, а институт «Прикладная химия» находился в критическом состоянии и нуждался в срочной финансовой поддержке. Госкорпорация же была готова выделить на эти цели около 150 млн руб. из своих средств.

«Не было ни одного года, когда объемы падали, всегда наблюдался рост»

Однако передачу «Ростеху» Завода им. Свердлова Дмитрий Рогозин не поддержал. Причин для этого было несколько, утверждает федеральный чиновник, присутствовавший на заседании коллегии. Во-первых, предприятие имеет внушительный военный госзаказ, поскольку является единственным в России производителем октогена (основной компонент твердого ракетного топлива, в том числе в космической отрасли и в боевых частях всех основных видов ракет) и гексогена (используется для получения взрывчатых составов, применяемых для снаряжения боеприпасов и управляемых авиационных бомб). Во-вторых, по объемам реально отгруженной продукции Завод им. Свердлова может спокойно конкурировать со всеми предприятиями, входящими в «РТ-Химкомпозит». «Предприятие крепкое, технологии отработаны — отдавать госкорпорации монопольного производителя взрывчатых веществ, не нуждающегося в оздоровлении, было признано нецелесообразным,— подчеркнул собеседник «Ъ».— Правительство поручило профильным ведомствам проработать вопросы кооперации предприятий в контексте реформы всей отрасли спецхимии». По итогам совещания Дмитрий Рогозин изложил свое видение ситуации с заводом Владимиру Путину, который согласился повременить с его передачей «Ростеху», а также премьеру Дмитрию Медведеву. Последний, по сведениям «Ъ», распорядился провести отдельное совещание с его участием по вопросам развития спецхимии и боеприпасной отрасли. Оно состоится после того, как профильные ведомства и предприятия подготовят свои предложения.

В «РТ-Химкомпозите» «Ъ» подтвердили, что стратегия холдинга предусматривает создание ЦМХ. «Мы рассчитываем, что помимо научных центров (Институт пластмасс им. Петрова и Институт полимеров им. Каргина.— «Ъ»

) в состав центра станет возможным включение не только Завода им. Свердлова, но и Бийского олеумного завода»,— сообщили в холдинге, добавив, что на этих площадках планируется разместить серийное производство продукции малотоннажной химии.

Иван Сафронов

Физическая природа взрывного превращения

Взрывное превращение, как правило, носит кратковременный характер, протекает при температурах от 2500 до 4500 K и сопровождается выделением огромного количества высокотемпературных газов и тепла. Взрывная реакция не требует наличия в окружающем воздухе окислителя (в качестве которого обычно выступает кислород), поскольку он содержится в химически связанном виде в ингредиентах взрывчатки.

Стоит отметить, что суммарное количество энергии, которая высвобождается при взрыве, относительно невелико и обычно в пять или шесть раз меньше теплотворной способности нефтепродуктов аналогичной массы. Тем не менее, несмотря на скромную энергетическую отдачу, огромная скорость реакции, которая по закону Аррениуса является следствием большой температуры, обеспечивает достижение высоких значений мощности.

Высвобождение большого количества газообразных продуктов сгорания считается другим признаком химической реакции в виде взрыва. При этом, стремительная трансформация взрывчатого вещества в высокотемпературные газы сопровождается скачкообразным изменением давления (до 10—30 ГПа), которое носит название ударной волны. Распространение этой волны способствует передаче энергии от одного слоя взрывчатки к другому и сопровождается возбуждением в новых слоях аналогичной химической реакции. Этот процесс получил название детонации, а инициирующая его ударная волна стала называться детонационной волной.

Существует ряд веществ, способных к нехимическому взрыву (например, ядерные и термоядерные материалы, антивещество). Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Класс 1. Взрывчатые вещества.

Взрывчатые вещества и изделия, которые по своим свойствам могут взрываться, вызывать пожар с взрывчатым действием, а также устройства, содержащие взрывчатые вещества и средства взрывания, предназначенные для производства пиротехнического эффекта.

Пример: тротил, ТЭН, нитроглицерин, аммонал, гранитол.

Подскласс 1.1

Вещества и изделия, которые характеризуются опасностью взрыва массой (взрыв массой — это такой взрыв, который практически мгновенно распространяется на весь груз).

Подскласс 1.3

Вещества и изделия, которые характеризуются пожарной опасностью, а также либо незначительной опасностью взрыва, либо незначительной опасностью разбрасывания, либо тем и другим, но не характеризуются опасностью взрыва массой: а) которые при горении выделяют значительное количество лучистого тепла, или b) которые, загораясь одно за другим, характеризуются незначительным взрывчатым эффектом или разбрасыванием либо тем и другим.

Подскласс 1.4

Вещества и изделия, представляющие лишь незначительную опасность взрыва в случае воспламенения или инициирования при перевозке. Эффекты проявляются в основном внутри упаковки, при этом не ожидается выброса осколков значительных размеров или на значительное расстояние. Внешний пожар не должен служить причиной практически мгновенного взрыва почти всего содержимого упаковки.

Подскласс 1.5

Вещества очень низкой чувствительности, которые характеризуются опасностью взрыва массой, но обладают настолько низкой чувствительностью, что существует очень малая вероятность их инициирования или перехода от горения к детонации при нормальных условиях перевозки. В соответствии с минимальным требованием, предъявляемым к этим веществам, они не должны взрываться при испытании на огнестойкость.

Подскласс 1.6

Изделия чрезвычайно низкой чувствительности, которые не характеризуются опасностью взрыва массой. Эти изделия содержат только крайне нечувствительные к детонации вещества и характеризуются ничтожной вероятностью случайного инициирования или распространения взрыва.

Примечание: опасность, характерная для изделий подкласса 1.6, ограничивается взрывом одного изделия.

Дополнительная информация о классе

Вещества и изделия класса 1 отнесены к одной из групп совместимости, обозначенных заглавными буквами латинского алфавита от А до S. Обращение со взрывчатыми веществами и изделиями требует величайшей осторожности

  • Вещества могут реагировать на удары и толчки.
  • Вещества могут реагировать на повышение температуры.
  • Вещества могут реагировать на образование искр.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector