Отравления синильной кислотой (цианидами)

Свойства

Цианистый водород (формула HCN) встречается в природе, его накапливают некоторые растения, его доля есть также в дыме табака, кокса, выделение наблюдается во время термического разложения полиуретанов и нейлона. Это вещество является природным инсектицидом и защищает косточки и семена многих растений от поражения вредителями. Например, оно содержится в ядрах абрикосов, слив, вишен, миндаля.

Легко смешивается при любом соотношении с диэтиловым спиртом, этанолом и водой, с ним вступает в реакцию также и альдегид. Цианистый водород становится твердым при -13,3 градусах по Цельсию, структура льда волокнистая. Превращается в газ при +25,7 градуса. Газ легче воздуха.

Различные материалы легко впитывают синильную кислоту. Это, например, резина, ткани, бетон, кирпич, а также любые пищевые продукты. Цианистый водород в смеси с воздухом образует легковоспламеняемую, взрывоопасную смесь, сила взрыва которой больше, чем от тротила.

Физиологические свойства

Синильная кислота является веществом, вызывающим кислородное голодание тканевого типа При этом наблюдается высокое содержание кислорода как в артериальной, так и в венозной крови и уменьшение таким образом артерио-венозной разницы, резкое понижение потребления кислорода тканями с уменьшением образования в них углекислоты. Синильная кислота и её соли, растворённые в крови, достигают тканей, где вступают во взаимодействие с трёхвалентной формой железа цитохромоксидазы. Соединившись с цианидом, цитохромоксидаза теряет способность переносить электроны на молекулярный кислород. Вследствие выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. С артериальной кровью кислород доставляется к тканям в достаточном количестве, но не усваивается ими и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов, необходимых для нормальной деятельности различных органов и систем. Активизируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный. Также подавляется активность и других ферментов — каталазы, пероксидазы, лактатдегидрогеназы.

Действие на нервную систему

В результате тканевой гипоксии, развивающейся под влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы.

Действие на дыхательную систему

В результате острого отравления наблюдается резкое увеличение частоты и глубины дыхания. Развивающуюся одышку следует рассматривать как компенсаторную реакцию организма на гипоксию. Стимулирующее действие синильной кислоты на дыхание обусловлено возбуждением хеморецепторов каротидного синуса и непосредственным действием яда на клетки дыхательного центра. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением вплоть до полной остановки. Причинами этих нарушений являются тканевая гипоксия и истощение энергетических ресурсов в клетках каротидного синуса и в центрах продолговатого мозга.

Действие на сердечно-сосудистую систему

Проникая в кровь, синильная кислота снижает способность клеток воспринимать кислород из притекающей крови. А так как нервные клетки больше остальных нуждаются в кислороде, они первыми страдают от её действия. В начальном периоде интоксикации наблюдается замедление сердечного ритма. Повышение артериального давления и увеличение минутного объёма сердца происходят за счёт возбуждения синильной кислотой хеморецепторов каротидного синуса и клеток сосудодвигательного центра с одной стороны, и выброса катехоламинов из надпочечников и вследствие этого спазма сосудов — с другой. В дальнейшем артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца.

Изменения в системе крови

Содержание в крови эритроцитов увеличивается, что объясняется рефлекторным сокращением селезёнки в ответ на развивающуюся гипоксию. Цвет венозной крови становится ярко-алым за счёт избыточного содержания кислорода, не поглощённого тканями. Артерио-венозная разница по кислороду резко уменьшается. При угнетении тканевого дыхания изменяется как газовый, так и биохимический состав крови. Содержание CO2 в крови снижается вследствие меньшего образования и усиленного его выделения при гипервентиляции. Это приводит в начале развития интоксикации к газовому алкалозу, который меняется метаболическим ацидозом, что является следствием активации процессов гликолиза. В крови накапливаются недоокисленные продукты обмена. Увеличивается содержание молочной кислоты, нарастает содержание ацетоновых тел, отмечается гипергликемия. Нарушение окислительно-восстановительных процессов в тканях приводит к гипотермии. Таким образом, синильная кислота и её соли вызывают явления тканевой гипоксии и связанные с ней нарушения дыхания, кровообращения, обмена веществ, функции центральной нервной системы, выраженность которых зависит от тяжести интоксикации.

Физические свойства

Смешивается во всех соотношениях с водой, этанолом, диэтиловым эфиром. Смешивается также со многими другими спиртами и эфирами, ароматическими углеводородами и тетрахлоруглеродом.

Молекула HCN имеет линейное строение с межатомными расстояниями H—C 0,1064 нм и C≡N 0,1156 нм и сильно полярна (электрический дипольный момент μ = 0,992⋅10−29 Кл·м).

Безводный цианистый водород является сильно ионизирующим растворителем, растворённые в нём электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна 106,8 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счёт образования водородных связей.

Температура плавления −13,29 °C, кипения +25,65 °C. Плотность 0,71618 г/см3 при 0 °C, 0,68708 г/см3 при 0 °C.

Критическое давление 4,95 МПа, критическая температура +183,5 °C, критическая плотность 0,195 г/см3.

Коэффициент преломления nD = 1,26136 (20 °C).

Энтальпия образования 132 кДж/моль, энтальпия плавления 8,41 кДж/моль, энтальпия испарения 25,2 кДж/моль. Энтальпия сгорания −663 кДж/моль. Энтропия 201,71 Дж/(моль·К) (при 298 К).

Динамическая вязкость 0,183 мПа·с, кинематическая вязкость 17,78 мН/м.

Удельное электрическое сопротивление жидкой синильной кислоты 105 Ом·м.

Твёрдая синильная кислота при нормальном давлении существует в двух кристаллических модификациях. При температуре ниже −102,78°C образует кристаллы ромбической сингонии, пространственная группа I2mm, параметры ячейки a = 0,413 нм, b = 0,485 нм, c = 0,434 нм, Z = 2. Выше этой температуры переходит в кристаллы тетрагональной сингонии, пространственная группа I4mm, параметры ячейки a = 0,463 нм, c = 0,434 нм, Z = 2.

Синильная кислота в судебно-медицинском отношении

Отравления С. к. и цианистыми соединениями сравнительно редки

В основном они носят характер несчастных случаев при неосторожном обращении с ядами в лаб. условиях или в результате употребления в пищу большого количества ядер косточковых плодов (горького миндаля, персиков, слив, абрикосов, черешни)

Абсолютная смертельная доза для человека составляет 40 г горького миндаля или 100 очищенных семян абрикосов, содержащих 1 г амигдалина — алкалоида, легко гидролизующегося на С. к., глюкозу и масло горького миндаля. Встречаются единичные случаи самоубийства и убийства при помощи цианистого калия. Заключение об отравлении как причине смерти основывается на совокупности клин, проявлений и результатов суд.-мед. и лаб. методов исследования. При молниеносной (апоплектиформной) форме отравления С. к. смерть наступает через 3—5 мин., при замедленной несколько позднее.

При осмотре и вскрытии трупа отмечают характерный вишневокрасный цвет трупных пятен, ушных раковин, губ, лица, запах горького миндаля от внутренних органов, красный цвет тканей и внутренних органов, набухание слизистой оболочки желудка. При отравлении ядрами косточковых плодов в желудке обнаруживают непереваренные частицы этих ядер — белые крупинки и коричневые чешуйки оболочки.

Суд.-хим. исследованию подвергают желудок с содержимым, мозг, печень, почку, кровь и мочу. С. к. изолируют из подкисленного биол. материала путем перегонки. Качественное ее обнаружение основано на реакции образования берлинской лазури, количественное — на определении с р-ром азотнокислого серебра или фотоколориметрировании (см. Колориметрия). При спектральном исследовании крови выявляется спектр циангемоглобина. При подозрении на отравление циансодержащими ядрами косточковых плодов проводят ботаническое исследование содержимого желудка и кишечника.

Библиография: Авдеев М. И. Судебно-медицинская экспертиза трупа, с. 371, М., 1976; Бобков С. С. и Смирнов С. К. Синильная кислота, М., 1970; Вредные вещества в промышленности, под ред. Н. В. Лазарева и И. Д. Гадаскиной, т. 3, с. 260, Л., 1977; Лечение острых отравлений, под ред. М. Л. Тараховского, с. 179, Киев, 1982; Лужников Е. А. Клиническая токсикология, с. 189, М., 1982; Профессиональные болезни, под ред. А. А. Летавета и др., М., 1973; Руководство по судебно-медицинской экспертизе отравлений, под ред. Р. В. Бережного и др. с. 141, М., 1980; Справочник по профессиональной патологии, под ред. Л. Н. Грацианской и В. Е. Ковшило, с. 341, Л., 1981; Швайкова М. Д. Токсикологическая химия, с. 69, М., 1975.

Устранение аварий

Водород цианистый (класс опасности — 2) может быть смертельно опасным для человека. Во время ликвидаций аварий, которые связаны с выбросом или проливом NCH, опасная зона составляет 400 метров. Необходимо изолировать ее и удалить людей, убрать любые источники пламени, также запрещается курить. Находиться следует с подветренной стороны.

При нахождении в пределах опасной зоны обязательно использование средств защиты (изолирующих противогазов или дыхательных аппаратов, а также средств защиты кожи Л-1, КИХ-5 и КИХ-4). За пределами четырехсотметровой зоны можно не пользоваться средствами защиты кожи и обойтись промышленными и гражданскими противогазами, чтобы обезопасить себя от отравления.

Соли

Основная статья: Цианиды

Соли синильной кислоты называются цианидами. Все цианиды, как и сама кислота, очень ядовиты. Цианиды подвержены сильному гидролизу. При хранении водных растворов цианидов при доступе диоксида углерода они разлагаются:

  • KCN+H2O+CO2⟶HCN+KHCO3{\displaystyle {\mathsf {KCN+H_{2}O+CO_{2}\longrightarrow HCN+KHCO_{3}}}}
  • KCN+2H2O⟶NH3+HCOOK{\displaystyle {\mathsf {KCN+2H_{2}O\longrightarrow NH_{3}+HCOOK}}}

Ион CN− (изоэлектронный молекуле СО) входит как лиганд в большое число комплексных соединений d-элементов. Комплексные цианиды в растворах очень стабильны.

Цианиды тяжёлых металлов термически неустойчивы; в воде, кроме цианида ртути (Hg(CN)2), нерастворимы. При окислении цианиды образуют соли — цианаты:

2KCN+O2⟶2KOCN{\displaystyle {\mathsf {2KCN+O_{2}\longrightarrow 2KOCN}}}

Многие металлы при действии избытка цианида калия или цианида натрия дают комплексные соединения, что используется, например, для извлечения золота и серебра из руд:

8NaCN+4Au+O2+2H2O⟶4NaAu(CN)2+4NaOH{\displaystyle {\mathsf {8NaCN+4Au+O_{2}+2H_{2}O\longrightarrow 4Na+4NaOH}}}

Яд

Головная боль, раздражение слизистых, чувство горечи во рту, паника — все это может вызывать цианистый водород. Воздействие на человека начинается после преодоления порога в 0,3 мг/м3 (в кубе) — это предельная допустимая концентрация в воздухе для рабочих помещений. Атмосферный воздух населенных пунктов не должен содержать более 0,01 мг/м3.

Человек начинает чувствовать характерный запах миндаля при концентрации в 2-5 мг/м3. При увеличении концентрации до 5-20 мг/м3 проявляются первые симптомы: боли в голове и головокружение, раздражение слизистых оболочек и глаз, во рту чувствуется горечь, также появляется необоснованное чувство страха. Длительное вдыхание паров с концентрацией 50-60 мг/м3 вызывает тошноту и рвоту, сердцебиение, расширение зрачков, судороги и потерю сознания. Для смертельного исхода достаточно вдыхать пары с концентрацией 130 мг/м3 в течение часа, а при концентрации 220 мг/м3 время снижается до пяти минут. Смертельная концентрация составляет 1500 мг/м3.

Применение

В химическом производстве

Является сырьём для получения акрилонитрила, метилметакрилата, адипонитрила и других соединений. Синильная кислота и большое число её производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластмасс, каучука, органического стекла, стимуляторов роста растений, гербицидов.

Как отравляющее веществo

Впервые в роли боевого отравляющего вещества синильная кислота была использована французской армией 1 июля 1916 года на реке Сомме. Однако из-за отсутствия кумулятивных свойств и малой стойкости на местности последующее использование синильной кислоты в этом качестве прекратилось.

Синильная кислота являлась основной составной частью препарата «Циклон Б», который был наиболее популярным в Европе во время Второй мировой войны инсектицидом, а также использовался нацистами для убийства людей в концентрационных лагерях. В некоторых штатах США синильная кислота использовалась в газовых камерах в качестве отравляющего вещества при исполнении приговоров смертной казни, в последний раз это было сделано в Аризоне в 1999 году. Смерть, как правило, наступает в течение 5—15 минут.

Химические свойства

Очень слабая одноосновная кислота: её константа диссоциации Ka = 1,32⋅10−9, pKa = −8,88 (при 18 °C). Образует с металлами соли — цианиды. Взаимодействует с оксидами и гидроксидами щелочных и щёлочноземельных металлов.

Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО и N2. Температура самовоспламенения в воздухе 538 °C. Температура вспышки −18 °C. Взрывоопасная концентрация паров HCN в воздухе 4,9—39,7%.

В смеси кислорода со фтором горит с выделением большого количества тепла:

2HCN+O2+F2→2HF+2CO+N2+1020{\displaystyle {\mathsf {2HCN+O_{2}+F_{2}\rightarrow 2HF+2CO+N_{2}+1020}}} кДж.

Синильная кислота широко применяется в органическом синтезе. Она реагирует с карбонильными соединениями, образуя циангидрины:

RR′C=O+HCN→RR′C(OH)CN.{\displaystyle {\mathsf {RR’C\!=\!O+HCN\rightarrow RR’C(OH)CN}}.}

С хлором, бромом и иодом прямо образует циангалогениды:

X2+HCN→XCN+HX.{\displaystyle {\mathsf {X_{2}+HCN\rightarrow XCN+HX}}.}

С галогеналканами — нитрилы (реакция Кольбе):

RX+HCN→R−CN+HX.{\displaystyle {\mathsf {RX+HCN\rightarrow R\!-\!CN+HX}}.}

С алкенами и алкинами реагирует, присоединяясь к кратным связям:

HCN+CH≡CH→Cu+CH2=CHCN.{\displaystyle {\mathsf {HCN+CH\!\equiv \!CH{\xrightarrow {Cu^{+}}}CH_{2}\!=\!CHCN}}.}
HCN+CH2=CH2 →PdAl2O3 CH3CH2CN.{\displaystyle {\mathsf {HCN+CH_{2}\!=\!CH_{2}\ {\xrightarrow {Pd/Al_{2}O_{3}}}\ CH_{3}CH_{2}CN}}.}
HCN+RCH=NH→Cu+RCH(NH2)CN.{\displaystyle {\mathsf {HCN+RCH\!=\!NH{\xrightarrow {Cu^{+}}}RCH(NH_{2})CN}}.}

Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, например, HCN-CuCl.

При разложении водой даёт формиат аммония, либо формамид

HCN+2H2O⟶HCOONH4{\displaystyle {\ce {HCN + 2H2O -> HCOONH4}}}

HCN+H2O⟶HCONH2{\displaystyle {\mathsf {HCN+H_{2}O\longrightarrow HCONH_{2}}}}

Охрана труда

ПДК в воздухе рабочей зоны равна 0,3 мг/м3 (максимально-разовая). По данным при опасной концентрации люди скорее всего не почувствуют запаха; а согласно порог восприятия запаха может быть 5,6 мг/м3. Поэтому использование широко распространённых в сочетании с «заменой по появлении запаха под маской» (как это почти всегда рекомендуется в РФ поставщиками СИЗОД) приведёт к чрезмерному воздействию синильной кислоты на, по крайней мере, часть работников — из-за запоздалой замены противогазных фильтров. Для защиты от этого вещества следует использовать значительно более эффективные технологии и средства коллективной защиты.

Получение

В настоящий момент существуют три наиболее распространённых метода получения синильной кислоты в промышленных масштабах:

Метод .mw-parser-output .ts-comment-commentedText{border-bottom:1px dotted;cursor:help}@media(hover:none){.mw-parser-output .ts-comment-commentedText:not(.rt-commentedText){border-bottom:0;cursor:auto}}Андрусова — прямой синтез из аммиака и метана в присутствии воздуха и платинового катализатора при высокой температуре:

2NH3+2CH4+3O2→Pt2HCN+6H2O.{\displaystyle {\mathsf {2NH_{3}+2CH_{4}+3O_{2}{\xrightarrow {Pt}}2HCN+6H_{2}O}}.}

Метод BMA (Blausäure aus Methan und Ammoniak), запатентованный фирмой Degussa: прямой синтез из аммиака и метана без воздуха в присутствии платинового катализатора при высокой температуре:

NH3+CH4→PtHCN+3H2.{\displaystyle {\mathsf {NH_{3}+CH_{4}{\xrightarrow {Pt}}HCN+3H_{2}}}.}

  • Побочный продукт при производстве акрилонитрила путём окислительного аммонолиза пропилена.
  • Реакцией цианида калия с водой и диоксидом углерода:

KCN+H2O+CO2⟶HCN+KHCO3{\displaystyle {\mathsf {KCN+H_{2}O+CO_{2}\longrightarrow HCN+KHCO_{3}}}}

Термическим разложением железосинеродистой и железистосинеродистой кислот:

2H3Fe(CN)6 →T FeFe(CN)6+6HCN{\displaystyle {\mathsf {2H_{3}\ {\xrightarrow {T}}\ Fe+6HCN}}}

3H4Fe(CN)6 →100oC Fe2Fe(CN)6+12HCN{\displaystyle {\mathsf {3H_{4}\ {\xrightarrow {100^{o}C}}\ Fe_{2}+12HCN}}}(в присутствии влаги)

В Шавиниганском процессе углеводороды (например, пропан) реагируют с аммиаком. В лаборатории небольшие количества синильной кислоты образуются путём добавления кислот к цианидным солям щелочных металлов:

HCl+NaCN⟶HCN+NaCl{\displaystyle {\ce {HCl + NaCN->HCN + NaCl}}}

H++NaCN⟶HCN+Na+{\displaystyle {\ce {H+ + NaCN ->HCN + Na+}}}

Эта реакция иногда является основой случайных отравлений, потому что кислота превращает нелетучую цианидную соль в газообразный циановодород.

Реакцией монооксида углерода с аммиаком:

NH3+CO→ThO2HCN+H2O.{\displaystyle {\mathsf {NH_{3}+CO{\xrightarrow {ThO2}}HCN+H_{2}O}}.}

Фотолиз метана в бескислородной атмосфере:

2CH4+N2⟶2HCN+3H2{\textstyle {\mathsf {2CH_{4}+N_{2}\longrightarrow 2HCN+3H_{2}}}}

Антидоты синильной кислоты

Для лечения отравлений синильной кислотой известно несколько антидотов, которые могут быть разделены на две группы. Лечебное действие одной группы антидотов основано на их взаимодействии с синильной кислотой с образованием нетоксичных продуктов. К таким препаратам относятся, например, коллоидная сера и различные политионаты, переводящие синильную кислоту в малотоксичную роданистоводородную кислоту, а также альдегиды и кетоны (глюкоза, диоксиацетон и др.), которые химически связывают синильную кислоту с образованием циангидринов. К другой группе антидотов относятся препараты, вызывающие образование в крови метгемоглобина: синильная кислота связывается метгемоглобином и не доходит до цитохромоксидазы. В качестве метгемоглобинообразователей применяют метиленовую синь, а также соли и эфиры азотистой кислоты.

Сравнительная оценка антидотных средств: метиленовая синь предохраняет от двух смертельных доз, тиосульфат натрия и тетратиосульфат натрия — от трёх доз, нитрит натрия и этилнитрит — от четырёх доз, метиленовая синь совместно с тетратиосульфатом — от шести доз, амилнитрит совместно с тиосульфатом— от десяти доз, азотистокислый натрий совместно с тиосульфатом — от двадцати смертельных доз синильной кислоты.

Токсичность и биологические свойства

Синильная кислота — сильнейший яд общетоксического действия, блокирует клеточную цитохромоксидазу, в результате чего возникает выраженная тканевая гипоксия. Половинные летальные дозы (LD50) и концентрации для синильной кислоты:

  • Мыши:
    • перорально (ORL-MUS LD50) — 3,7 мг/кг;
    • при вдыхании (IHL-MUS LC50) — 323 м.д.;
    • внутривенно (IVN-MUS LD50) — 1 мг/кг.
  • Кролики, внутривенно (IVN-RBT LD50)
  • Человек, минимальная опубликованная смертельная доза перорально (ORL-MAN LDLo)

При вдыхании синильной кислоты в небольших концентрациях наблюдается царапанье в горле, горький вкус во рту, головная боль, тошнота, рвота, боли за грудиной. При нарастании интоксикации уменьшается частота пульса, усиливается одышка, развиваются судороги, наступает потеря сознания. При этом цианоз отсутствует (содержание кислорода в крови достаточное, нарушена его утилизация в тканях).

При вдыхании синильной кислоты в высоких концентрациях или при попадании её внутрь появляются клонико-тонические судороги и почти мгновенная потеря сознания вследствие паралича дыхательного центра. Смерть может наступить в течение нескольких минут.

В организме человека метаболитом синильной кислоты является роданид (тиоцианат) SCN−, образующийся при её взаимодействии с серой под действием фермента роданазы.

Физиологическое воздействие

Синильная кислота — это вещество, способное вызывать в тканях кислородное голодание. При отравлении в теле человека наблюдается увеличение содержания кислорода в венозной и артериальной крови, таким образом снижается артериально-венозная разница, как следствие, потребление кислорода тканями резко снижается. Цианистый водород и его соли, будучи растворенными в крови, попадают в ткани и вступают в реакцию с цитохромоксидазой. После соединения с цианидом у этой трехвалентной формы железа нарушается функция переноса электронов на молекулы кислорода. Из-за того, что конечное звено окисления выходит из строя, нарушается весь процесс дыхания, ткани страдают от гипоксии, ведь хотя кислород и доставляется в нужном количестве, он не усваивается и отправляется в венозную кровь в неизменном виде.

Во время отравления синильной кислотой наблюдается активизация гликолиза: обмен меняется с аэробного на анаэробный.

Биологическая роль

Показано, что нейроны способны вырабатывать эндогенную синильную кислоту (цианистый водород, HCN) после их активации эндогенными или экзогенными опиоидами и что образование нейронами эндогенной синильной кислоты повышает активность NMDA-рецепторов и, таким образом, может играть важную роль в передаче сигнала между нейронами (нейротрансмиссии). Более того, образование эндогенного цианида оказалось необходимым для проявления в полном объёме анальгетического действия эндогенных и экзогенных опиоидов, а вещества, снижающие образование свободной HCN, оказались способны уменьшать (но не полностью устранять) анальгетическое действие эндогенных и экзогенных опиоидов. Выдвинуто предположение, что эндогенная синильная кислота может являться нейромодулятором.

Известно также, что стимуляция мускариновых холинорецепторов клеток феохромоцитомы в культуре повышает образование ими эндогенной синильной кислоты, однако стимуляция мускариновых холинорецепторов ЦНС в живом организме крысы приводит, наоборот, к снижению образования эндогенной синильной кислоты.

Также показано, что синильная кислота выделяется лейкоцитами в процессе фагоцитоза и способна убивать патогенные микроорганизмы.

Возможно, что вазодилатация, вызываемая нитропруссидом натрия, связана не только с образованием окиси азота (механизм, общий для действия всех сосудорасширяющих препаратов группы нитратов, таких, как нитроглицерин, нитросорбид), но и с образованием цианида. Возможно, что эндогенный цианид и образующийся при его обезвреживании в организме тиоцианат играют роль в регуляции функций сердечно-сосудистой системы, в обеспечении вазодилатации, и являются одними из эндогенных антигипертензивных веществ.

Первая помощь и неотложная терапия

Необходимо немедленно начать анти-дотную терапию (см. Антидоты ОВ), прекратить дальнейшее поступление яда, пострадавшего вынести на свежий воздух, снять загрязненную одежду, обеспечить покой, тепло. Одновременно с антидотной терапией проводят ингаляции кислородом (оптимально — гипербарическая ок-сигенация!), подкожно — 1 мл 5% р-ра эфедрина и 2 мл кордиамина. Необходим строгий контроль за величиной АД! При попадании яда через рот наряду с антидотной терапией немедленно делают промывание желудка 0,1% р-ром перманганата калия, 5% р-ром тиосульфата натрия или 2% р-ром гидрокарбоната натрия; дают солевое слабительное, обильное питье. Внутривенно повторно вводят по 20— 40 мл 40% р-ра глюкозы с тиамином (1 мл 5% р-ра) и аскорбиновой к-той (5 мл 5% р-ра). При слабом пульсе и пониженном АД дополнительно внутривенно вводят 40 мл 1,5% р-ра Со2-ЭДТА (дикобальтовой соли этилендиаминтетраацетата), при слабом эффекте — повторное введение этого препарата в половинном количестве. При нарушении или остановке дыхания внутривенно вводят 0,5 мл 1% р-ра лобелина либо 1 мл 0,5 % р-ра цититона, длительно проводят искусственное дыхание. После того как пострадавший пришел в сознание и у него восстановилось дыхание, необходима немедленная госпитализация.

При хрон. отравлении С. к. лечение симптоматическое.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector