«невесомость» тема: выполнил ученик 4 «б» класса мбоу сош 155 пономаренко дмитрий научный руководитель: хоружева и.а. — презентация

Невесомость

Выясним некоторые особенности веса. Вес – это сила, с которой тело давит на опору или растягивает подвес, из этого следует, что если тело не подвешено или не закреплено на опоре, то его вес равен нулю. Данный вывод кажется противоречивым нашему повседневному опыту. Однако он имеет вполне справедливые физические примеры.

Если пружину с подвешенным к ней телом отпустить и позволить ей свободно падать, то указатель динамометра будет показывать нулевое значение (Рис. 4). Причина этого проста: груз и динамометр движутся с одинаковым ускорением (g) и одинаковой нулевой начальной скоростью (V0). Нижний конец пружины движется синхронно с грузом, при этом пружина не деформируется и силы упругости в пружине не возникает. Следовательно, не возникает и встречной силы упругости, которая является весом тела, то есть тело не обладает весом, или является невесомым.            

Рис. 4. Свободное падение пружины с подвешенным к ней телом

Состояние невесомости возникает благодаря тому, что в земных условиях сила тяжести сообщает всем телам одинаковое ускорение, так называемое ускорение свободного падения. Для нашего примера мы можем сказать, что груз и динамометр движутся с одинаковым ускорением. Если на тело действует только сила тяжести или только сила всемирного тяготения, то это тело находится в состоянии невесомости

Важно понимать, что в этом случае исчезает только вес тела, но не сила тяжести, действующая на это тело

Состояние невесомости – не экзотика, довольно часто многие из вас его испытывали – любой человек, подпрыгивающий или спрыгивающий с какой либо высоты, до момента приземления находится в состоянии невесомости.

Рассмотрим случай, когда динамометр и прикрепленное к его пружине тело движутся вниз с некоторым ускорением, но не совершают при этом свободного падения. Показания динамометра уменьшатся по сравнению с показаниями при неподвижном грузе и пружине, значит, вес тела стал меньше, чем он был в состоянии покоя. В чем причина такого уменьшения? Дадим математическое объяснение, опираясь на второй закон Ньютона.

Рис. 5. Математическое объяснение веса тела

На тело действуют две силы: сила тяжести, направленная вниз, и сила упругости пружины, направленная вверх. Эти две силы сообщают телу ускорение. и уравнение движения будет иметь вид:

 m =  + m

Выберем ось y (Рис. 5), поскольку все силы направлены вертикально, нам достаточно одной оси. В результате проецирования и переноса слагаемых получим – модуль силы упругости будет равен:

ma =  mg — Fупр

Fупр =  mg — ma,

где в левой и правой части уравнения стоят проекции сил, указанных во втором законе Ньютона, на ось y. Согласно определению, вес тела по модулю равен силе упругости пружины, и, подставив ее значение, получим :

P = Fупр =  mg — ma = m( g — а)

Вес тела равен произведению массы тела на разность ускорений. Из полученной формулы видно, что если модуль ускорения тела меньше модуля ускорения свободного падения, то вес тела меньше силы тяжести, то есть вес тела, движущегося ускоренно, меньше веса покоящегося тела.

Рассмотрим случай, когда тело с грузиком движется ускоренно вверх (Рис. 6).

Стрелка динамометра покажет значение веса тела большее, чем покоящегося груза.

Рис. 6. Тело с грузиком движется ускоренно вверх

Тело движется вверх, и его ускорение направлено туда же, следовательно, нам необходимо поменять знак проекции ускорения на ось у.

Из формулы видно, что теперь вес тела больше силы тяжести, то есть больше веса покоящегося тела.

Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой.

Это справедливо не только для тела, подвешенного на пружине, но и для тела, укрепленного на опоре.

Рассмотрим пример, в котором проявляется изменение тела при его ускоренном движении (Рис. 7).

Автомобиль движется по мосту выпуклой траектории, то есть по криволинейной траектории. Будем считать форму моста дугой окружности. Из кинематики мы знаем, что автомобиль движется с центростремительным ускорением, величина которого равна квадрату скорости, деленной на радиус кривизны моста. В момент нахождения его в наивысшей точке, это ускорение будет направлено вертикально вниз. Согласно второму закону Ньютона это ускорение сообщается автомобилю равнодействующей силой тяжести и силой реакции опоры.

m =  + m

Выберем координатную ось у, направленную вертикально вверх, и запишем это уравнение в проекции на выбранную ось, подставим значения и проведем преобразования:

 

Рис. 7. Наивысшая точка нахождения автомобиля

Вес автомобиля, по третьему закону Ньютона, равен по модулю силе реакции опоры (), при этом мы видим, что вес автомобиля по модулю меньше силы тяжести, то есть меньше веса неподвижного автомобиля.

Исследования воздействия космоса на организм

Также ученые путем экспериментов и исследований выяснили, что пребывание в невесомости сказывается на иммунной системе организма. Другими словами, человек сильнее подвержен различным заболеваниям, поскольку ухудшается его иммунитет. Если говорить простым языком, то суть работы иммунной системы – отыскать в организме чужеродный микроорганизм и атаковать его.

Исследования проводила группа ученых NASA с привлечением 23 космонавтов (мужчин и женщин) в возрасте около 53 лет. Космонавты находились в условиях невесомости разное количество времени. Необходимые анализы им сделали до вылета, некоторые участники эксперимента брали у себя кровь, находясь на станции. Затем обследования проводились по прибытию космонавтов на Землю сразу и спустя определенные промежутки времени.

Таким образом, удалось сравнить результаты и выяснить, что иммунитет космонавтов, которые работали на МКС полгода, значительно ухудшился по сравнению с остальными участниками исследований. В частности, существенно снизилась способность иммунной системы распознавать угрозу и устранять ее. По возвращению космонавтов на Землю работа иммунитета начала медленно восстанавливаться. Точная причина таких изменений не установлена, поскольку это может быть стресс, нарушение работы биологических часов, нахождение в невесомости.

Еще одно исследование проводилось по влиянию невесомости на кожу организма. Космонавты часто жаловались на возникновение зуда кожи и сухости. Для эксперимента на орбиту отправили мышей сроком на три месяца. Обследование вернувшихся из космоса грызунов показали, что кожный покров истончился на 15%, а также изменился рост шерсти. Причем изменения происходили на уровне генов.

Интересный факт: при помощи мышей установлено и влияние невесомости на зрение. Их отправляли в космическое пространство на месяц, после чего проанализировали состояние глаз. Ученые выяснили, что зрение ухудшается из-за нарушенной деятельности кровеносных сосудов. Для организма всех живых существ естественно то, что кровь под действие гравитации устремляется к ногам. В невесомости она оказывает давление на мозг, что и наносит вред работе сосудов.
В невесомости кровь оказывает давление на мозг

Космонавты, работающие на МКС, часто жалуются на ухудшение зрения. По прибытию их на Землю зрение тоже постепенно возвращается к прежнему состоянию, но, как и в случае с другими органами и системами, все зависит от длительности нахождения в космосе. Ученые активно занимаются поиском решений, которые помогут снизить влияние невесомости на человеческий организм.

Невесомость несвойственна для человеческого организма. Многие его системы зависимы от силы притяжения, поэтому отсутствие гравитации негативно сказывается на здоровье космонавтов. Ухудшается работа опорно-двигательного аппарата, сердечнососудистой системы, ослабевают мышцы, зрение, иммунитет, состояние кожи. Пагубный эффект невесомости зависит от того, насколько долго космонавт пребывает в космосе. Для профилактики различных заболеваний и проблем используется специальное снаряжение, а космонавты тщательно готовятся к отправке в космос.

Пример задачи

Ракета при старте с Земли движется вертикально вверх с ускорением а=20 м/с2. Каков вес летчика-космонавта, находящегося в кабине ракеты, если его масса m=80 кг?

Совершенно очевидно, что ускорение ракеты направлено вверх и для решения мы должны использовать формулу веса тела для случая с перегрузом (Рис. 8).     

Рис. 8. Иллюстрация к задаче

Необходимо отметить, что если неподвижное относительно Земли тело имеет вес 2400 Н, то его масса составляет 240 кг, то есть космонавт ощущает себя в три раза массивнее, чем есть на самом деле.

  • https://www.youtube.com/watch?v=xQOns-yfmJI
  • https://www.youtube.com/watch?v=vWs4MIZTEwM
  • https://www.youtube.com/watch?v=hEXCvquS82c

Как невесомость воздействует на человека

При переходе из условий земной гравитации к условиям невесомости у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации. По симптомам это состояние похоже на морскую болезнь: снижение аппетита, головокружение, головная боль, усиление слюноотделения, тошнота, иногда встречается рвота, пространственные иллюзии. Все эти эффекты обычно проходят после 3-6 суток полёта. При длительном (несколько недель и более) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер: быстрое атрофирование мышц – мускулатура фактически выключается из деятельности человека, в результате понижаются все физические характеристики организма; следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода; из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего гемоглобин; ограничение подвижности нарушает фосфорный обмен в костях, что приводит к снижению их прочности.

Человеческий организм, попав в условия невесомости, начинает перестраиваться. Человек худеет. Всё тело становится дряблым, как при долгом лежании в постели. Кости становятся хрупкими — они здесь не испытывают нагрузки. Мышцы работают мало. А от бездействия все органы слабеют. Похоже на то, как пролежавший в постели несколько месяцев человек заново учится ходить. Космонавты Николаев и Севастьянов после восемнадцати дней пребывания в невесомости вообще первое время не могли встать на ноги.

Чтобы уменьшить вредное действие невесомости, учёные придумали разные средства: они рекомендуют космонавтам побольше заниматься в космосе физкультурой, в основном с эспандерами. Создали для космонавтов особые нагрузочные костюмы «пингвин». В эти плотно облегающие костюмы вшиты резинки, стягивающие тело в клубочек. Чтобы в таком костюме держаться прямо, приходится всё время слегка напрягать мышцы. А это как раз и нужно, чтобы они не слабели.

Делают на орбитальных станциях и «бегущую дорожку». Чтобы не уплыть, космонавт пристёгивается эластичными тяжами. Они заменяют космонавту его вес, тянут за пояс и за плечи вниз к полу, прижимают к «дорожке». Она под космонавтом бежит назад. А он по ней бежит вперёд. Не все легко переносят невесомость, особенно в первый момент. Многим кажется, что их подвесили вниз головой. У некоторых наступает тошнота. Первые день – два космонавты обычно привыкают к невесомости.

Невесомость возникает при выходе космического корабля на орбиту. Но исчезновение веса нельзя путать с исчезновением гравитационного притяжения – например, на Международной космической станции (на высоте 350 км) оно только на 10% меньше, чем на Земле. Состояние невесомости на МКС возникает не из-за отсутствия гравитации, а за счёт движения по круговой орбите с первой космической скоростью, то есть космонавты как-бы постоянно «падают вперед» со скоростью 7,9 км/с.

Причина развития симптомов

По мнению ряда исследователей, причина развития  синдромов заключена в следующем:

  • С рецепторов тела и внутренних органов, а также с рецепторов вестибулярного аппарата начинает поступать в центральную нервную систему поток информации об исчезновении сил тяжести и изменении условий постоянного сжатия тел, которое организм испытывал на Земле.
  • На какое-то время возникает рассогласованность «периферии с центром», что приводит к нарушению координации человека.
  • В состоянии невесомости также исчезает масса гидростатического столба крови.

В привычных условиях гравитации кровь под влиянием сил тяжести стремится к перемещению в нижние части тела. Для стабилизации движения крови по сосудам на Земле возникли механизмы, препятствующие такому перемещению. Одним из «антигравитационных» приспособлений является повышенный тонус сосудов нижних конечностей. Когда кровь «не имеет веса», она начинает перемещаться в направлении головы.

Это фаза первичных реакций организма на состояние невесомости.

Далее начинается адаптация организма к новой среде и следует целый ряд рефлекторных  сдвигов в организме.

Выше ростом

Чтобы рассказать, какие именно результаты можно получить благодаря модели «сухой» иммерсии, остановимся подробнее на серии экспериментов, посвящённых изучению болей в спине и увеличению роста космонавтов при переходе к невесомости.

Боли в спине возникают у космонавтов в первые дни полётов, а также у испытателей в условиях «сухой» иммерсии. В ходе предыдущих исследований удалось показать, что в условиях невесомости из-за изменения транспорта питательных элементов межпозвоночные диски увеличиваются, а внутри их структур накапливается жидкость. Кроме того, боль могла возникать из-за воздействия на чувствительные корешки спинного мозга в результате увеличения длины позвоночника.

Слева — изменения в позвоночнике испытателя в «сухой» иммерсии; справа — мышцы, участвующие в поддержании позы человека по В. С. Гурфинкелю / ИМБП РАН

Причиной этих нарушений, как показали исследования, проводившиеся в ГНЦ РФ — ИМБП РАН на протяжении ряда лет, может быть снижение тонуса мышц-экстензоров спины. Предположение о наличии мышц, участвующих в поддержании позы, было выдвинуто В. С. Гурфинкелем ещё в 1965 году.

Изменение тонуса в мышцах — разгибателях ног закономерно регистрировалось в предыдущих модельных исследованиях. Поэтому имелись основания предполагать, что в условиях невесомости снижается также и тонус мышц спины, которые участвуют в поддержании позы на Земле (они называются «позными»), где гравитационная нагрузка заставляет их оставаться в тонусе.

Для проверки этой гипотезы была проведена серия модельных экспериментов с «сухой» иммерсией различной длительности — от шести часов до пяти суток. При этом исследовался тонус мышц спины с определением показателей их поперечной жёсткости; параллельно средствами резонансной вибрографии, миотонометрии, магнитно-резонансной томографии изучались изменения позвоночника. Помимо этого, учёные измеряли рост человека и оценивали характер возникающего болевого синдрома.

2 апреляСкоро домой

«У меня начались последние, пятые сутки сухой иммерсии в ИМБП РАН. Самочувствие хорошее. Я почти адаптировался к условной невесомости. Завтра утром выемка и множество тестов. Сегодня их тоже хватает.

Во время иммерсии испытатели участвуют в различных экспериментах. Это и изучение болевого порога («Альгометрия»), и изменения зрения в иммерсии, и умение контролировать нагрузку сжиманием ладони («Динамометр») и нажатием ступни («Педаль»).

Многие приборы, которые сейчас в наличии, либо есть на борту МКС, либо используются перед полётом и после него для экспериментов с космонавтами.

В свободное время я слушаю музыку и читаю книгу «За пределами Земли».

В результате выяснилось, что болевой синдром не относится к корешковой боли, а носит мышечный характер, без иррадиации. Пребывание в условиях гравитационной разгрузки сопровождается снижением тонуса (или поперечной жёсткости) разгибателей спины, относящихся к группе позных мышц, причём именно в первые часы и дни этот процесс идёт особенно выраженно.

Эти же изменения приводили к увеличению роста космонавта в условиях микрогравитации. В поясничном отделе позвоночника, по данным МРТ, увеличивалась высота межпозвоночных дисков и сглаживался поясничный лордоз.

Применение средства профилактики — костюма аксиального нагружения «Пингвин» в полете / ИМБП РАН

В группе исследований, в которой применялись средства профилактики, такие как костюм аксиальной нагрузки «Пингвин» и аппаратный комплекс миостимуляции, выраженность и оценка болевого синдрома, а также увеличение роста были меньше по сравнению с группой «чистой» иммерсии без применения средств профилактики.

Космос без невесомости

Как ни странно, но это вполне возможно. По крайней мере, большую орбитальную станцию вполне реально сделать, как пример, в форме тора, этакого «бублика». И закрутить бублик вокруг его оси.

Космический «бублик» вращается и создает в отсеках силу тяжести

В этом случае, на всех людей, находящихся в отсеках этого орбитального тороидального космического корабля, будет действовать центробежная сила. Источники этой силы таковы. Это следствие движения космонавтов по кругу. Центробежная сила будет приложена в направлении от оси вращения, то есть она будет прижимать космонавтов к наружной (дальней от оси) стенке бублика. Космонавты испытают действие силы тяжести, пропорциональной их массе. При определенном соотношении радиуса этого орбитального тора и скорости его вращения, можно добиться того, что гравитационные условия для космонавтов будут такие же, как на поверхности Земли. Они почувствуют, будто имеют вес как на родной планете.

Кратко подводя итоги, можно констатировать, что невесомость для пилотируемых полетов в космос, в том числе и полетов военного назначения, действует не только во благо, но и во зло. Но зло это не является неизбежным, существует эффективные способы борьбы с негативными последствиями невесомости.


Автор статьи:

Штольц Константин

Инженер. Кандидат наук.

Какова микрогравитация на вкус?

Когда вы впервые окажетесь в состоянии невесомости, вы почувствуете следующее:

— тошнота;

— дезориентация;

— головная боль;

— потеря аппетита;

— запор;

— еще кое-что…

Чем дольше вы будете оставаться в условиях микрогравитации, тем слабее будут ваши мышцы и кости. Эти ощущения будут вызваны различными изменениями в системах вашего организма. Давайте подробно рассмотрим, как тело реагирует на невесомость.

Космическая болезнь

Тошнота и дезориентация, которая на вкус как сосущее чувство в желудке, когда автомобиль «летит» вниз по трассе или вас подхватывает на карусели. Только на борту корабля это чувство будет длиться несколько дней. Это чувство космической болезни, слабость моторики, когда ваш мозг получает противоречивую информацию от вестибулярных органов, расположенных в вашем внутреннем ухе. Ваши глаза видят, куда двигаться вверх и вниз в корабле, но ваша вестибулярная система полагается на силу тяжести, определяя направления, что не работает в невесомости. Поэтому ваши глаза могут говорить мозгу, что вы движетесь сверху вниз, но мозг этого не поймет. Это вызывает дезориентацию и тошноту, что может привести к потере аппетита и рвоте. К счастью, спустя несколько дней мозг адаптируется и начнет реагировать исключительно на визуальные сигналы. Таблетки тоже помогут.

Одутловатое лицо и куриные лапки

В условиях микрогравитации ваше лицо будет одутловатым, а пазухи — перегруженными, что вызовет головную боль и нарушение моторики. На Земле это можно почувствовать, если стоять вверх ногами — кровь приливает к голове.

На Земле гравитация притягивает вашу кровь, в результате чего значительные ее объемы скапливаются в венах ног. Как только вы окажетесь в условиях микрогравитации, кровь сдвинется из ваших ног в грудь и голову. Лицо опухнет, а ноги, наоборот, уменьшатся в размерах.

Когда кровь переходит в грудь, сердце увеличивается в размерах и качает больше крови с каждым ударом. Почки отвечают на этот увеличенный кровоток производством большего количества мочи, будто вы выпили большой стакан воды. Кроме того, увеличение кровотока снижает уровень секреции гипофизом антидиуретического гормона (АДГ), что уменьшает жажду. Вы не будете хотеть пить столько же воды, сколько на Земле. В совокупности эти два фактора помогут вашей груди и голове избавиться от лишней жидкости за несколько дней, а поток жидкости вашего тела нормализуется (для космических условий). По возвращении на Землю, вы будете больше пить и чувствовать усталость, но это пройдет.

Космическая анемия

По мере того, как ваши почки выводят лишнюю жидкость, они также уменьшают секрецию эритропоэтина — гормона, стимулирующего производство красных кровяных тел клетками костного мозга. Снижение производства красных кровяных клеток сопровождается уменьшением объема плазмы, поэтому гематокрит (процент объема крови, занимаемого красными кровяными телами) такой же, как на Земле. По возвращении на Землю, ваш уровень эритропоэтина будет расти, так же как и количество красных кровяных тел.

Слабые мышцы

Когда вы находитесь в условиях микрогравитации, ваше тело принимает позу «зародыша»: вы немного сгибаетесь, ваши руки и ноги также принимают полусогнутое состояние. В таком положении вы не используете многие мышцы, особенно те, которые помогают вам поддерживать осанку (антигравитационные мышцы). По мере пребывания на борту МКС, ваши мышцы меняются. Их масса уменьшается, что приводит к «куриным лапкам». Ваше тело больше не нуждается в мышцах, которые медленно сокращаются, вроде тех, что используются в положении стоя. Нужны быстро сокращающиеся волокна, чтобы быстрее передвигаться по станции. Чем больше вы остаетесь на МКС, тем меньше у вас будет мышечной массы. Потеря мышечной массы ослабляет вас, и это, между прочим, является серьезной проблемой для длительных полетов, особенно после возвращения на Землю.

Остеопсатироз

На Земле ваши кости поддерживают вес вашего тела. Размер и масса костей тщательно сбалансированы. В условиях микрогравитации вашим костям больше не нужно поддерживать ваше тело, поэтому все ваши кости, особенно несущие, в районе бедер, ляжек и нижней части спины, используются меньше, чем на Земле. Размер и масса костей в невесомости уменьшаются примерно на 1% в месяц. В результате по возвращении на Землю они просто могут разрушиться. Неизвестно, каков процент восстанавливаемых костей после возвращения на Землю, но он точно не равен 100. Именно эта проблема вносит ограничения на время пребывания в космосе.

В дополнение к слабым костям, концентрация кальция в крови приводит к болезни почек, которым нужно этот избыточный кальций выводить. Могут образоваться камни в почках.

Почему в центре планет возможна невесомость?

Земля имеет сферическую форму, и гравитационные силы противодействуют друг другу – именно в центральной части планет. Таким образом, если предположительно попасть в середину, то будет оказываться давление в разные стороны с равномерной силой, создавая невесомость. Из этого выходит, что ощущение невесомости в центре планет возможно, если на данной планете есть достаточно сильное гравитационное поле.

Чтобы проще понять гравитацию внутри планеты, необходимо разбить на небольшие кусочки ее недра, а также взять условный объект. Когда объект приближается к центру, объем тяготеющих масс над ним увеличивается. В определенный момент их количество сравняется с таким же объемом масс под объектом. Логично предположить, что это произойдет прямо в центральной части. Таким образом, наступит состояние невесомости.

Гравитация внутри планеты

Можно привести несложный пример для понимания этого явления. Если прорыть колодец от поверхности к центру, взять весы с подвешенной гирькой и опустить их внутрь. По мере опускания весов вниз будет заметно, что гиря постепенно становится все легче и легче. Это объясняется законом всемирного тяготения.

Все указанные расчеты правильны, если бы планета имела форму шара идеальной формы. Она должна иметь везде одинаковую плотность. В реальности же все выглядит немножко иначе, поскольку, например, земная кора содержит уплотнения и пустые участки. Мантия Земли вероятней всего тоже имеет неоднородный состав. Согласно научным сведениям, земное ядро состоит из расплавленного железа, оно отличается не равномерной формой и постоянно двигается. Таким образом, невесомость Земли находится не в геометрическом центре, а там, где располагается центр тяжести.

Что касается невесомости в центре звезд, то об этом тоже можно сделать вывод исходя из особенностей силы притяжения. В частности, Солнце обладает невероятно сильным гравитационным полем. Именно из-за этой гравитации планеты Солнечной системы вращаются вокруг звезды. Солнце тоже имеет неоднородную структуру, а в его центре находится ядро. Если теоретически предположить путешествие к центру Солнца, то и там возможна невесомость из-за уравнения гравитационных масс.

Наличие невесомости в центре звезд и планет, в частности Земли, вполне вероятно и логически объяснимо. В пользу данной гипотезы свидетельствуют научные исследования в области гравитации. Например, на поверхности Земли действует сила притяжения. При погружении к центру планеты, количество гравитационных масс сверху и снизу объекта будет постепенно уравновешиваться. В определенный момент сила притяжения будет действовать на объект со всех сторон одинаково и возникнет состояние невесомости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector