Абсолютное оружие: за что ракету р-36м прозвали «сатаной»
Содержание:
- Взрыв.
- Ракета-носитель Falcon Heavy
- Тактико-технические характеристики
- Особенности конструкции
- «Сармат» на смену «Сатане»
- Как запустить тяжелую ракету из шахты
- Что из себя представляет крылатая ракета
- В чем особенности?
- Примечания
- История создания
- Устройство
- Американская ракета X-51F Waverider
- Историческая справка
- «Воевода»
- Система амортизации
- Самая мощная баллистическая ракета
- Страшный атомный поезд
- Главные цели
- Основные перспективы
- Выводы
Взрыв.
Эксперименты в области взрыва проводятся как с химическими взрывчатыми веществами в количествах, измеряемых граммами, так и с ядерными зарядами мощностью до нескольких мегатонн. Взрывы могут производиться в разных средах, таких, как земля и скальные породы, под водой, у поверхности земли в нормальных атмосферных условиях или в разреженном воздухе на больших высотах. Главный результат взрыва – образование ударной волны в окружающей среде. Ударная волна распространяется от места взрыва сначала со скоростью, превышающей скорость звука в среде; затем с уменьшением интенсивности ударной волны ее скорость приближается к скорости звука. Ударные волны (в воздухе, воде, грунте) могут поражать живую силу противника, разрушать подземные укрепления, морские суда, здания, наземные транспортные средства, самолеты, ракеты и спутники.
Для моделирования интенсивных ударных волн, возникающих в атмосфере и у поверхности земли при ядерных взрывах, применяются особые устройства, называемые ударными трубами. Ударная труба, как правило, представляет собой длинную трубу, состоящую из двух секций. На одном ее конце расположена камера сжатия, которая заполняется воздухом или другим газом, сжатым до сравнительно высокого давления. Другой ее конец представляет собой камеру расширения, открытую на атмосферу. При мгновенном разрыве тонкой диафрагмы, разделяющей две секции трубы, в камере расширения возникает ударная волна, бегущая вдоль ее оси. На рис. 4 показаны кривые давления ударной волны в трех поперечных сечениях трубы. В сечении 3 она принимает классическую форму ударной волны, возникающей при детонации. Внутри ударных труб можно размещать миниатюрные модели, которые будут претерпевать ударные нагрузки, аналогичные действию ядерного взрыва. Нередко проводятся испытания, в которых действию взрыва подвергаются более крупные модели, а иногда и полномасштабные объекты.
Экспериментальные исследования дополняются теоретическими, и вырабатываются полуэмпирические правила, позволяющие предсказывать разрушающее действие взрыва. Результаты таких исследований используются при проектировании боезарядов межконтинентальных баллистических ракет и противоракетных систем. Данные такого рода необходимы также при проектировании ракетных шахт и подземных убежищ для защиты населения от взрывного действия ядерного оружия.
Для решения специфических задач, характерных для верхних слоев атмосферы, имеются специальные камеры, в которых имитируются высотные условия. Одна из таких задач – оценка уменьшения силы взрыва на больших высотах.
Проводятся также исследования, в которых измеряются интенсивность и длительность прохождения ударной волны в грунте, возникающей при подземных взрывах. На распространение таких ударных волн влияют тип грунта и степень его слоистости. Лабораторные опыты проводятся с химическими ВВ в количествах менее 0,5 кг, тогда как в полномасштабных экспериментах заряды могут измеряться сотнями тонн. Такие эксперименты дополняются теоретическими исследованиями. Результаты исследований используются не только для усовершенствования конструкции оружия и убежищ, но и для обнаружения несанкционированных подземных ядерных взрывов. Исследования детонации требуют проведения фундаментальных исследований в области физики твердого тела, химической физики, газодинамики и физики металлов.
Ракета-носитель Falcon Heavy
Элон Маск (Elon Musk), главный конструктор и генеральный директор компании Space Exploration Technologies (SpaceX), 6 апреля представил завершительные спецификации и назвал дату запуска самой могучей в мире ракеты-носителя Falcon Heavy. Этот носитель будет самой мощной космической ракетой во всем мире, уступая по грузоподъемности только лунной ракете Saturn V. Новая ракета-носитель – это совершенно новые возможности и для правительства и для запусков коммерческого назначения. Первый запуск Falcon Heavy запланирован на 2014 год и будет осуществляться с космодрома на мысе Канаверал.
Основная задача двухступенчатой РН Falcon Heavy состоит в выводе на орбиту спутников и межпланетных аппаратов весом свыше 53 тонн. То есть фактически этот носитель может поднять на орбиту земли полностью загруженный лайнер «Боинг» с экипажем, багажом, пассажирами и полными баками топлива. Первая ступень ракеты включает три блока, у каждого из которых имеется девять двигателей. В Конгрессе США обсуждается и вероятность создания еще более мощной ракеты, которая сможет вывести на орбиту 70-130 тонн полезной нагрузки. Представители компании SpaceX согласились с необходимостью разработки и создания такой ракеты для возможности выполнения большого количества полетов на Марс с пилотируемым управлением.
Тактико-технические характеристики
Р-36М | Р-36М УТТХ | Р-36М2 | ||||
---|---|---|---|---|---|---|
Тип ракеты | МБР | |||||
Индекс комплекса | 15П014 | 15П018 | 15П018М | |||
Индекс ракеты | 15А14 | 15А18 | 15А18М | |||
По договору СНВ | РС-20А | РС-20Б | РС-20В | |||
Код НАТО | SS-18 Mod 1 «Satan» | SS-18 Mod 3 «Satan» | SS-18 Mod 2 «Satan» | SS-18 Mod 4 «Satan» | SS-18 Mod 5 «Satan» | SS-18 Mod 6 «Satan» |
Шахтная пусковая установка (ШПУ) | ШПУ 15П714 типа ОС-67 | ШПУ 15П718 | ШПУ 15П718М | |||
Основные ТТХ комплекса | ||||||
Максимальная дальность, км | 11 200 | 16 000 | 10 500 | 11 000 | 16 000 | 11 000 |
Точность (КВО), м | 500 | 500 | 500 | 300 | 220 | 220 |
Боеготовность, сек | 62 | |||||
Условия боевого применения | ||||||
Тип старта | миномётный из ТПК | |||||
Данные ракеты | ||||||
Стартовая масса, кг | 209 200 | 208 300 | 210 400 | 211 100 | 211 100 | 211 400 |
Количество ступеней | 2 | 2 + ступень разведения | ||||
Система управления | автономная инерциальная | |||||
Габаритные размеры ТПК и ракеты | ||||||
Длина, м | 33,65 | 34,3 | 34,3 | |||
Максимальный диаметр корпуса, м | 3 | |||||
Боевое оснащение | ||||||
Тип головной части | «Тяжёлая» моноблочная | «Лёгкая» моноблочная | РГЧ ИН | РГЧ ИН | «Лёгкая» моноблочная | РГЧ ИН |
Масса головной части, кг | 6565 | 5727 | 7823 | 8470 | 8470 | 8800 |
Мощность термоядерного заряда | 18—20—25 Мт | 8 Мт | 10х500 Кт | 8х1,3 Мт | 8 Мт | 10х800 Кт |
КСП ПРО | квазитяжелые ложные цели, генераторы активных радиопомех | |||||
История | ||||||
Разработчик | КБ «Южное» | |||||
Конструктор | 1969-1971 гг.: М. К. Янгель с 1971 г.: В. Ф. Уткин | В. Ф. Уткин | ||||
Начало разработки | ||||||
Пуски | ||||||
Пуски бросковых макетов | ||||||
Всего пусков | ||||||
Лётно-конструкторские испытания | ||||||
Пуски с ПУ | с 21 февраля 1973 | с 31 октября 1977 г. | c 21 марта 1986 г. | |||
Всего пусков | 43 | 62 | ||||
Из них успешные | 36 | 56 | ||||
Принятие на вооружение | 1978 г. | 1979 г. | 1980 г. | 1988 г. | ||
Изготовитель | Южный машиностроительный завод |
Особенности конструкции
- Р-36М — двухступенчатая ракета, применяющая последовательное разделение ступеней. Баки горючего и окислителя разделены совмещенным промежуточным днищем. Вдоль корпуса проходит бортовая кабельная сеть и трубопроводы пневмогидравлической системы, которые закрыты кожухом. Двигатель 1-ой ступени имеет 4 автономных однокамерных ЖРД, которые имеют турбонасосную подачу топлива по замкнутой схеме, они шарнирно закреплены в хвостовой части ступени на раме. Отклонение двигателей по команде системы управления позволяет управлять полетом ракеты. Двигатель 2-ой ступени включает однокамерный маршевый и четырехкамерный рулевой ЖРД.
- Все двигатели работают на азотном тетраксиде и НДМГ. В Р-36М реализовано много оригинальных технических решений, к примеру, химический наддув баков, торможение отделившейся ступени при помощи истечения газов наддува и тому подобное. На Р-36М монтирована инерциальная система управления, работающая благодаря бортовому цифровому вычислительному комплексу. Его использование позволяет обеспечить высокую точность стрельбы.
- Конструкторы предусмотрели возможность совершить пуск Р-36М2 даже после ядерного удара противника по району расположения ракет. «Сатана» имеет темное теплозащитное покрытие, которое облегчает прохождение через радиационное пылевое облако, появившееся после ядерного взрыва. Специальные датчики, которые измеряют гамма- и нейтронное излучение на время прохождения ядерного «гриба» регистрируют его и выключают систему управления, но двигатели при этом продолжают работать. После выхода из опасной зоны автоматика включает систему управления и корректирует траекторию полета. МБР данного типа имели особо мощное боевое оснащение. Было два варианта ГЧ: РГЧ ИН с восемью ББ (по 900кт.) и моноблочная термоядерная (24Мт.). Имелся и комплекс преодоления систем ПРО.
Видео о ракете Сатана
https://youtube.com/watch?v=nwFP_slb1g0
https://youtube.com/watch?v=nwFP_slb1g0
Автор статьи:
Никифоров Владислав
«Сармат» на смену «Сатане»
В 2021 году на вооружение поступят новые межконтинентальные баллистические ракеты РС-28 «Сармат». Эти тяжёлые многоступенчатые жидкостные межконтинентальные ракеты заменят в РВСН комплексы стационарного базирования Р-36М2 «Воевода» (в классификации НАТО — «Сатана»).
- Испытание баллистической ракеты «Сармат»
Эти ракеты упомянул президент России Владимир Путин в послании Федеральному собранию в 2018 году, отметив, что РС-28 будет «беспрецедентной по мощности». Благодаря практически неограниченной дальности новейшая МБР сможет поражать цели в любых направлениях. Кроме того, ракета имеет короткий разгонный участок, что затрудняет её перехват на активной стадии полёта.
«Дальность новой тяжёлой ракеты, количество и мощность боевых блоков больше, чем у «Воеводы». «Сармат» будет оснащён широким спектром ядерных боеприпасов большой мощности, в том числе гиперзвуковых, и самыми современными системами преодоления ПРО. Высокие характеристики по защищённости пусковых установок и большие энергетические возможности обеспечат применение данного комплекса в любых условиях обстановки», — заявил Владимир Путин.
Тактико-технические характеристики нового баллистического комплекса были впервые раскрыты на форуме «Армия-2019». Дальность эффективного поражения составляет 18 тыс. км, стартовая масса — 208,1 т, масса полезной нагрузки — более 10 т, масса топлива — 178 т, длина ракеты — 35,5 м, диаметр — 3 м, тип боевой части — разделяющаяся головная часть с блоками индивидуального наведения.
Военный эксперт Юрий Кнутов в беседе с RT отметил, что «Сармат» является уникальной ракетой, которая будет способна поражать цели даже через Южный полюс.
Появление ракеты пятого поколения «Сармат» было необходимо, потому что сроки службы советской ракеты «Воевода» истекли, отметил в разговоре с RT главный редактор журнала «Арсенал Отечества» Виктор Мураховский.
«За счёт новых технических решений, новых рецептур топлива удалось качественно повысить характеристики этой ракеты. Ракеты «Сармат» позволяют наносить удар с любого направления, траекторию можно выстроить так, что они обходят районы противоракетной обороны государств. Кроме того, полезная нагрузка более чем 10 т на этой ракете позволяет применять несколько боевых частей по разным траекториям», — рассказал эксперт.
Также эти ракеты оснащены комплексом преодоления противоракетной обороны, напомнил собеседник RT.
«Это изделие поступит в указанные сроки на оснащение ракетных войск стратегического назначения РФ и станет одной из основ стратегической стабильности, будет одним из компонентов, который на десятилетия вперёд обеспечит стратегический паритет и стратегическую стабильность в мире», — подчеркнул Виктор Мураховский.
Как запустить тяжелую ракету из шахты
Корпус ракеты сделан из алюминия и магния — металлов довольно мягких. Толщина стенки – 3 мм, иначе снаряд получится слишком тяжелым. Вес ракеты – более 210 тонн, и ее нужно запустить из глубокой шахты. Несложно представить, что произойдет, если столь тяжелый и хрупкий предмет начнет омываться раскаленными газами, вырывающимися из сопел. Внутри – 195 тонн топлива, не просто горючего, а взрывоопасного. Но и это не все. В головной части находятся ядерные боеприпасы мощностью в четыреста Хиросим.
Вот такая техническая задача. И ее советские инженеры решили. Ракету плавно и бережно извлекают на поверхность три особых пороховых заряда, называемых аккумуляторами давления, поднимают на десятки метров, и только после этого запускаются предварительно подготовленные («поддутые») двигатели стартовой ступени.
Это решение позволило также существенно увеличить боевой радиус системы. На начальное преодоление силы тяготения расходовалось большое количество топлива, в данном случае его экономия составляет примерно 9 тонн.
Это только один из примеров изящества решений, иллюстрация гениальности великого Уткина. Их много, на описание других ушла бы целая книга. Возможно, многотомная.
Что из себя представляет крылатая ракета
Крылатые ракеты, готовые к запуску
Крылатая ракета — это беспилотный летательный аппарат. По своей структуре и истории создания он ближе к авиации, нежели к ракетостроению. Устаревшее название — самолет-снаряд — оно вышло из употребления, поскольку так называли и планирующие авиабомбы.
С учетом специфики строения и применения крылатых ракет выделяют следующие преимущества и недостатки таких снарядов:
- программируемый курс полета, что позволяет создавать комбинированную траекторию и обходить противоракетную оборону противника;
- движение на малой высоте с учетом рельефа делает снаряд менее заметным для радиолокационного обнаружения;
- высокая точность современных крылатых ракет сочетается с высокой стоимостью их изготовления;
- снаряды летят с относительно небольшой скоростью — примерно 1150 км/ч;
- поражающая мощность невысокая, исключение — ядерные боеприпасы.
История разработки крылатых ракет связана с появлением авиации. Еще до Первой мировой войны возникла идея летающей бомбы. Необходимые для ее реализации технологии были вскоре разработаны:
- в 1913 комплекс радиоуправления беспилотным летательным аппаратом изобрел школьный учитель физики Вирт;
- в 1914 был успешно опробован гироскопический автопилот Э. Сперри, позволявший удерживать самолет на заданном курсе без участия пилота.
На фоне подобных технологий сразу в нескольких странах велись разработки летающих снарядов. Большинство из них велись параллельно с работой над автопилотированием и радиоуправлением. Идея оснастить их крыльями принадлежит Ф. А. Цандеру. Именно он в 1924 году опубликовал рассказ «Перелеты на другие планеты».
Первым успешным серийным производством подобных летательных аппаратов принято считать английскую радиоуправляемую воздушную мишень Queen. Первые образцы были созданы в 1931, в 1935 запущено серийное производство Queen Bee (пчелиная матка). Кстати, именно с этого момента беспилотники получили неофициальное название Drone — трутень.
Основной задачей первых беспилотников была разведка. Для боевого применения не хватало точности и надежности, что при высокой стоимости разработки делало производство нецелесообразным.
Несмотря на это, исследования и испытания в данном направлении продолжались, особенно с началом Второй мировой войны.
Первые испытания и применения показали низкую точность снаряда. Из-за этого планировалось использовать их вместе с пилотом, который на заключительном этапе должен был покинуть снаряд с парашютом.
Как и в случае с баллистическими ракетами, разработки немецких ученых перешли к победителям. Дальнейшую эстафету по проектированию современных крылатых ракет переняли СССР и США. Планировалось использовать их в качестве ядерных боеприпасов. Однако разработка таких снарядов была остановлена в связи с экономической нецелесообразностью и успехом развития баллистических ракет.
В чем особенности?
В ходе тестирований ракета обрела большую стойкость к различным воздействиям. Боевое применение комплекса стало эффективнее и оперативнее благодаря нескольким факторам:
- Точность комплекса была повышена в 1,3 раза.
- Стали применяться заряды большей мощности.
- Площадь зоны разведения боевых блоков увеличилась в 2,3 раза.
- Комплекс запускается из разных режимов.
- Ядерная ракета «Воевода» стала работать в три раза дольше в режиме автономности.
- Время на боеготовность уменьшилось в два раза.
Благодаря оснащению комплекса прогрессивными техническими решениями он стал обладать лучшими энергетическими возможностями.
Примечания
- ↑
- ↑ . MilitaryRussia.Ru — отечественная военная техника (после 1945 г.). Дата обращения 30 июня 2017.
- International Institute for Strategic Studies. The Military Balance 2016 / James Hackett. — London: Taylor&Francis, 2016. — С. 189. — ISBN ISBN 9781857438352.
- (англ.). Soviet Armed Forces 1945-1991. Сайт Майкла Холма. Дата обращения 18 февраля 2013.
- (англ.). Soviet Armed Forces 1945-1991. Сайт Майкла Холма. Дата обращения 18 февраля 2013.
- (англ.). Soviet Armed Forces 1945-1991. Сайт Майкла Холма. Дата обращения 18 февраля 2013.
- (англ.). Soviet Armed Forces 1945-1991. Сайт Майкла Холма. Дата обращения 18 февраля 2013.
- . yuzhnoye.com.ua. Дата обращения 29 августа 2019.
- (недоступная ссылка). Дата обращения 15 июня 2012.
История создания
Межконтинентальная баллистическая ракета тяжелого класса Р-36М была разработана в КБ «Южное» (Днепропетровск). 2 сентября 1969 года было принято постановление Совета министров СССР о создании ракетного комплекса Р-36М. Ракета должна была иметь высокую скорость, мощность и другие высокие характеристики. Эскизный проект конструкторы завершили в декабре 1969 года. Межконтинентальная ядерная баллистическая ракета предусматривала 4 вида боевого оснащения – с разделяющимися, маневрирующими и моноблочными головными частями.
КБ «Южное» после смерти знаменитого М.К. Янгеля возглавил академик В.Ф. Уткин. Создавая новую ракету, получившую обозначение Р-36М, применяли весь опыт, накопленный коллективом при создании предыдущих моделей ракет. В целом это была новая ракетная система с уникальными ТТХ, а не модификация Р-36. Разработка Р-36М шла параллельно с проектированием других ракет третьего поколения, общими особенностями ТТХ которых были:
- применение РГЧ ИН;
- использование автономной системы управления с БЦВМ;
- размещение командного пункта и ракет в сооружениях высокой защищенности;
- возможность дистанционного переприцеливания непосредственно перед пуском;
- наличие более совершенных средств преодоления ПРО;
- высокая боевая готовность, обеспечивающая быстрый пуск;
- использование более совершенной системы управления;
- повышенная живучесть комплексов;
- увеличенный радиус поражения объектов;
- повышенные характеристики боевой эффективности, которые обеспечивает увеличенная мощность, скорость и точность ракет.
- радиус зоны поражения Р-36М блокирующим ядерном взрывом уменьшен в 20 раз по сравнению с ракетой 15А18, стойкость к гамма-нейтронному излучению повышен в 100 раз, стойкость к рентгеновскому излучению — в 10 раз.
Межконтинентальная ядерная баллистическая ракета Р-36М впервые совершила пуск с полигона Байконур 21 февраля 1973 года. Испытания ракетного комплекса были завершены лишь к октябрю 1975г. В 1974 году был развернут первый ракетный полк в г. Домбаровский.
Устройство
Двухступенчатая ракета выполнена по схеме «тандем» с последовательным расположением ступеней. Первая ступень обеспечивала разгон ракеты и была оснащена маршевым двигателем РД-251, состоявшим из трёх двухкамерных модулей РД-250. Маршевый ЖРД имел тягу на земле 274 т. Также на первой ступени был установлен четырёхкамерный рулевой двигатель РД-68М с поворотными камерами сгорания. В хвостовом отсеке были установлены четыре тормозных пороховых ракетных двигателя, запускающиеся при разделении первой и второй ступеней.
Вторая ступень обеспечивала разгон до скорости, соответствующей заданной дальности стрельбы. Она была оснащена двухкамерным маршевым двигателем РД-252 и четырёхкамерным рулевым двигателем РД-69М. Эти двигатели имели высокую степень унификации с двигателями первой ступени. Для отделения головной части на второй ступени также были установлены тормозные пороховые двигатели.
ЖРД ракеты работали на высококипящем двухкомпонентном самовоспламеняющемся топливе. В качестве горючего использовался несимметричный диметилгидразин (НДМГ), в качестве окислителя — азотный тетраоксид (АТ). Наддув всех баков осуществлялся продуктами сгорания основных компонентов топлива. Применённые конструкторские решения обеспечили высокую степень герметичности топливных систем, что позволило удовлетворить требования по семилетнему хранению ракеты в заправленном состоянии.
Ракета оснащалась моноблочной головной частью с наиболее мощными из испытанных к тому времени боевыми зарядами мощностью 8 Мт или 20 Мт. В хвостовом отсеке второй ступени были установлены контейнеры со средствами для эффективного преодоления системы ПРО противника. Система защиты состоит из специальных устройств, которые отстреливаются из контейнеров пиропатронами в момент отделения головной части и создают в районе боеголовки мишени ложных целей. Сочетание мощного заряда с высокой на то время точностью попадания (КВО — 1300 метров) и надёжным комплексом средств преодоления системы ПРО гарантировало выполнение боевой задачи.
Старт ракеты производился из шахтной пусковой установки (ШПУ), сам старт — газодинамический с запуском двигателя первой ступени непосредственно в пусковой установке. Выход ракеты из ПУ обеспечивался движением ракеты по направляющим в пусковом стакане.
В состав ракетного комплекса входило шесть рассредоточенных стартовых позиций, на каждой из которых размещались одиночные ШПУ. Около одной из них размещался командный пункт (КП), связанный линиями системы боевого управления и связи со всеми стартовыми позициями. Комплекс предусматривал меры защиты от поражающих факторов ядерного взрыва: уровень защищённости от ударной волны составлял для ШПУ 2 кгс/см², для КП — 10 кгс/см². Пусковая установка перекрывалась сверху специальным защитным устройством сдвижного типа, обеспечивающим герметизацию ствола шахты. В каждой ШПУ размещались источники электропитания, аппаратура и оборудование технологических систем, обеспечивавшие дистанционный контроль технического состояния систем ракеты и проведение операций по подготовке к пуску и пуск ракеты. Подготовка к пуску и сам пуск могли быть проведены как дистанционно — с КП, так и автономно — с каждой стартовой позиции. Время подготовки и проведение пуска Р-36 составляло 5 минут.
Американская ракета X-51F Waverider
Именно об этой ракете и идет речь в начале статьи – американцы объявили, что ее можно смело отнести к разряду самых быстрых ракет в мире. Создавая эту гиперзвуковую ракету с крыльями, американские разработчики задались целью сократить время полета высокоточных крылатых ракет. Конечно, они смогли сделать то, что задумали, – их ракета полетела со скоростью, которая в пять раз превышает скорость звука. Однако, это все же не столь быстро, как летает российская противоракета – максимальная скорость X-51F Waverider составляет 7000 км/час, что, конечно, можно назвать поистине отличной скоростью, но она гораздо ниже скорости российской противоракеты.
Первые испытания американской ракеты проводились в 2007 году (правда, проверялся лишь один из двигателей). Полномасштабные испытания американцам удалось провести через два года – тогда создатели прикрепили X-51F Waverider к бомбардировщику В-52. Именно при этом полете ракета показала мощную скорость, которая в пять раз превысила звуковую. Однако проверка этой самой быстрой ракеты в мире прошла не очень успешно, поскольку создатели несколько раз столкнулись с некоторыми препятствиями, которые даже заставляли отложить испытания.
В результате ракету все же удалось запустить с бомбардировщика и зафиксировать необходимые показатели. Однако в дальнейшем она должна была опуститься на дно Тихого океана, но этого не случилось, так как из-за некоторых сбоев разработчикам пришлось послать системе ракеты сигнал к самоуничтожению. А заняли испытания этой ракеты 200 секунд, что для ракет подобного типа является немалым временем.
Но представители военно-воздушных сил США после запуска гиперзвуковой крылатой ракеты были счастливы, поскольку это имеет немалую значимость для создания реактивных самолетов. Но испытания ракеты предстоит продолжить – так американцы планируют создать мощное оружие, с помощью которого можно будет в кратчайшие сроки наносить удары по любой точке Земли.
Таким образом, можно сделать вывод, что самая быстрая ракета в мире все же принадлежит Российской Федерации. И зная, что такое чудо нашей российской (даже советской) техники, защищает нашу Родину, мы можем быть совершенно спокойными.
Историческая справка
Первые серийные ракеты Vergeltungswaffe-2 (V2)
Первые теоретические работы, связанные с описываемым классом ракет, относятся к исследованиям К. Э. Циолковского, с 1896 года систематически занимавшегося теорией движения реактивных аппаратов. 10 мая 1897 года в рукописи «Ракета» К. Э. Циолковский вывел формулу (получившую название «формула Циолковского»), которая установила зависимость между:
- скоростью ракеты в любой момент, развиваемой под воздействием тяги ракетного двигателя
- удельным импульсом ракетного двигателя
- массой ракеты в начальный и конечный момент времени
В 1917 году Роберт Годдард из Смитсоновского института в США запатентовал изобретение, значительно повышавшее эффективность работы силовой установки за счёт применения на жидкостном ракетном двигателе сопла Лаваля. Это решение вдвое повышало эффективность ракетного двигателя и имело огромное влияние на последующие работы Германа Оберта и команды Вернера фон Брауна.
К 1929 году К. Э. Циолковский разработал теорию движения многоступенчатых ракет в условиях действия земной гравитации, выдвинул ряд идей, нашедших применение в ракетостроении: графитовых газовых рулей для управления полётом ракеты; использования компонентов топлива для охлаждения стенок камеры сгорания и сопла; насосной системы подачи компонентов топлива; использование в системах стабилизации гироскопа, применение многокомпонентных ракетных топлив (в том числе, рекомендовал топливные пары: жидкий кислород с водородом, кислород с углеводородами) и др.
В 1920-х годах научные исследования и экспериментальные работы по разработке ракетных технологий вели несколько стран. Однако, благодаря экспериментам в области жидкостных ракетных двигателей и систем управления, в лидеры по разработке технологий баллистических ракет вышла Германия.
Работа команды Вернера фон Брауна, позволила немцам разработать и освоить полный цикл технологий, необходимых для производства баллистической ракеты Фау-2 (V2), ставшей не только первой в мире серийно изготавливаемой боевой баллистической ракетой (БР), но и первой получившей боевое применение (8 сентября 1944 года). В дальнейшем, Фау-2 (V2) стала отправной точкой и основой для развития технологий ракет-носителей народнохозяйственного назначения и боевых баллистических ракет, как в СССР, так и в США, которые вскоре стали лидерами в этой области.
«Воевода»
В конце восьмидесятых годов была произведена модернизация ракеты Р-36М с целью повышения ее устойчивости к последствиям возможного ядерного удара и улучшения характеристик по точности. Кроме этого, требовалась доработка с учетом новых возможностей новейших американских систем ПРО. КБ «Южное» (г. Днепропетровск) успешно справилось с заданием, результатом работы стало изделие 15А18М, названное «Воеводой». При составлении текста договора СНВ-1 ее обозначили кодом «РС-20Б», а по своей сути это был все тот же ракетный комплекс «Сатана», только модернизированный.
Изменение международной обстановки, выраженное в стремлении руководства стран НАТО, и в первую очередь США, размесить свои базы как можно ближе к границам России, побудили пересмотреть условия договора СНВ-2, который так и не прошел ратификации, в той его части, которая касается многозарядных МБР. Ракеты 15А18М (вооруженные моноблоками), стоящие на боевом дежурстве в настоящее время, планируется заменить новыми российскими комплексами «Сармат», способными нести разделяющиеся боеголовки. Но о них рассказ уже другой…
Система амортизации
Разработка ракетного комплекса велась на основе достижений прошлого с использованием по максимуму имеющихся современных инженерных сооружений, коммуникаций и систем. Как следствие, «Воевода» — ракета, которая отличается высокой эффективностью, работает на жидком топливе, полностью ампулизирована и рассчитана для поражения особо важных объектов в разном диапазоне дальности. Разработка ракеты велась по двухступенчатой схеме, в которой последовательно располагались ступени и системы, разводящие основные элементы оснащения. Энергетические возможности комплекса были увеличены за счет нескольких факторов:
- Были улучшены характеристики двигателя, внедрена оптимальная схема выключения ДУ.
- В полости горючего была выполнена двигательная установка II ступени.
- Улучшению подверглись аэродинамические характеристики.
Двигательная установка разведения – это четырехкамерный ЖРД, который оснащен поворотными камерами сгорания – они выдвигаются в полете в рабочее положение. В ракете также используется универсальная жидкостная система, которая стала залогом быстрой и качественной сборки комплекса на заводе.
Самая мощная баллистическая ракета
Межконтинентальная ракета «Сатана» имеет вес 211 тонн. Запускается она минометным стартом и имеет двухступенчатое зажигание. Твердотопливное на первой ступени и жидкотопливное – на второй. С учетом такой особенности ракеты конструкторы внесли некоторые изменения, в результате которых масса стартовой ракеты оставалась прежней, вибрационные нагрузки, возникающие на старте, снижались, а энергетические возможности повышались. Баллистическая ракета «Сатана» имеет следующие размеры: длину – 34,6 метра, в диаметре – 3 метра. Это очень мощное оружие, боевая нагрузка ракеты от 8,8 до 10 тонн, пусковая возможность имеет радиус действия до 16 тысяч километров.
Это самый идеальный комплекс противоракетной обороны, в котором есть независимые друг от друга боеголовки индивидуального наведения и система ложных целей. «Сатана» Р–36М как самая мощная в мире ракета, относящаяся к классу «земля-воздух», занесена в Книгу рекордов Гиннеса. Создателем мощного оружия является М. Янгель. Основной целью конструкторского бюро под его руководством была разработка многоликой ракеты, которая была бы способна выполнять множество функций и иметь большую разрушительную силу. Судя по характеристикам ракеты, они со своей задачей справились.
Страшный атомный поезд
СССР недаром называли великой железнодорожной державой. Большие расстояния побудили строить рельсовые магистрали невиданными темпами еще царскую Россию, в советские же годы были протянуты новые линии, покрывшие всю территорию нашей страны сетью путей. День и ночь по ним идут составы, среди которых никогда нельзя отличить те, под крышами вагонов которых притаились многие мегасмерти. Передвижной комплекс «Сатана» мог базироваться на железнодорожной платформе, замаскированной под обычный поезд, отличить который от обычного не сможет самый совершенный разведывательный спутник. Разумеется, вес пусковой установки в 130 тонн не позволял использовать простой подвижной состав, так что, помимо технических задач, пришлось решать и транспортные, причем во всесоюзном масштабе. Деревянные шпалы меняли на железобетонные, качество и прочность полотна доводились до высочайшего уровня, ведь любая авария мгновенно могла превратиться в катастрофу. Ракетная установка «Сатана» имеет длину 23 метра, как раз под размер рефрижераторного вагона, но головной обтекатель пришлось разрабатывать особый — складной конструкции. Были и другие проблемы, но результат оправдывал затраты. Ответный удар мог быть нанесен из непредсказуемой точки, а значит, был гарантированным и неотвратимым.
Главные цели
Во время разработок производители преследовали цель обеспечить качественно новый уровень ТТХ и высокую боевую эффективность. Как следствие, межконтинентальная баллистическая ракета «Воевода» разрабатывалась в следующих направлениях:
- Повышалась живучесть ПУ и КП.
- Обеспечивалась устойчивость боевого управления в любых условиях применения комплекса.
- Расширялись оперативные возможности по переприцеливанию ракет, в частности при стрельбе по неплановым целеуказаниям. Скорость ракеты «Воевода» и время пуска из полной боевой готовности поражает показателями – с ними не сравнится ни один другой ракетный комплекс в мире.
- Обеспечивалась стойкость ракеты в полете к поражающим факторам с земли и высотным ядерным взрывам.
- Увеличивалась автономность комплекса.
- Увеличивался гарантийный срок эксплуатации ракетной установки.
Комплекс «Воевода» — ракета, которая отличается надежностью эксплуатации и живучестью в несколько раз больше по сравнению со многими ракетными комплексами.
Основные перспективы
Изначально предельный срок боевого дежурства ракет «Воевода» ставился на 2018 год, а теперь речь идет о 2026 годе. Специалисты говорят о том, что уже сейчас ракетный комплекс превысил гарантийный срок эксплуатации, при этом срок его боевого дежурства уже составляет около 24 лет. На данный момент проводятся работы с целью повышения срока эксплуатации ракеты до 30 лет, поэтому планируется сохранить данный комплекс в боевом составе стратегических ракетных войск вплоть до 2022 года.
Эксперты считают, что повысить максимально возможный срок эксплуатации ракет «Воевода» возможно благодаря тому, что они отличаются техническим совершенством, которое выражается в конструктивных и технологических решениях комплексов. Также было отмечено, что «Воевода» РС-20В будет находиться в боевом составе российских ракетных войск вплоть до 2026 года.
Выводы
Ракетный комплекс «Воевода» уникален: впервые запущенный еще в 1986 году, он вызвал много споров и расхождений во мнениях. Чего стоили только неудачные пуски, которые могли бы поставить крест на этих комплексах… Но своевременная модернизация и использование современных технологий привели к тому, что ракета «Воевода» со временем стала самой мощной и тяжелой в мире, попав по этим показателям в Книгу рекордов Гиннеса. Благодаря продуманной конструкции и совершенным системам, которыми оснащена ракета, она находится на вооружении в боевой готовности уже четверть века.
Ракетный комплекс «Воевода» («Сатана») хорош тем, что он неуязвим для ПРО, поскольку боеголовки комплекса в полете сопровождают ложные блоки. При этом площадь их рассеивания и плазменные следы такие же, как у реальных боеголовок, что путает противника. Кроме того, это очень защищенное оружие, расположенное в недоступных для атак противника шахтах. И главное: комплекс может простоять в законсервированном состоянии порядка 10 лет и всего за 30 секунд начать старт.