Сколько лет вселенной?

Космология и объекты ее изучения

Само понятие Вселенная не имеет четкого определения в астрономии. В разные исторические периоды и у различных народов оно имело целый ряд синонимов, таких как «космос», «мир», «мироздание», «универсум» или «небесная сфера». Нередко, говоря о процессах, происходящих в глубинах Вселенной, применяют термин «макрокосмос», противоположностью которому является «микрокосмос» мира атомов и элементарных частиц.

Сверхновая Cas A в созвездии Кассиопеи помогла астрономам понять, что будет с планетами нашей системы после смерти Солнца

На нелегком пути познания космология нередко пересекается с философией и даже теологией, и в этом нет ничего удивительного. Наука об устройстве Вселенной пытается объяснить, когда и как возникло мироздание, разгадать тайну зарождения материи, понять место Земли и человечества в бесконечности космоса.

У современной космологии две наибольшие проблемы. Во-первых, объект ее изучения – Вселенная – уникален, что делает невозможным применение статистических схем и методов. Говоря кратко, мы не знаем о существовании других Вселенных, их свойствах, структуре, поэтому не можем сравнивать. Во-вторых, длительность астрономических процессов не дает возможность проводить прямые наблюдения.

Космология исходит из постулата, что свойства и строение Вселенной одинаковы для любого наблюдателя, за исключением редких космических феноменов. Это означает, что вещество во Вселенной распределено однородно, и она имеет одинаковые свойства во всех направлениях. Из этого следует, что физические законы, работающие в части Вселенной, вполне можно экстраполировать на всю Метагалактику.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Возможно, мы просто не все видим?

Необъяснимый факт, указанный выше, открывает целый ряд новых проблем. Некоторые ученые постарались посчитать, сколько потребовалось бы времени для развития этих полностью сформированных галактик. Например, оксфордские ученые пришли к выводу, что размер всей Вселенной может быть в 250 раз больше наблюдаемой.

Мы действительно способны измерить расстояния до объектов в пределах наблюдаемой Вселенной, но то, что находится за этой гранью, нам не известно. Конечно же, никто не говорит, что ученые не пытаются это выяснить, но, как уже говорилось выше, наши возможности ограничены нашим уровнем технического прогресса. Кроме того, не стоит также сразу отбрасывать предположение о том, что ученые, возможно, так никогда и не узнают настоящих размеров всей Вселенной, если учесть все факторы, находящиеся на пути решения этого вопроса.

Гадание по камням

Со второй половины XVIII века ученые начали оценивать возраст Земли и Солнца на основе физических моделей. Так, в 1787 году французский натуралист Жорж-Луи Леклерк пришел к выводу, что, если бы наша планета при рождении была шаром из расплавленного железа, ей нужно было бы от 75 до 168 тысяч лет, чтобы остыть до нынешней температуры. Через 108 лет ирландский математик и инженер Джон Перри заново просчитал тепловую историю Земли и определил ее возраст в 2−3 млрд лет. В самом начале XX столетия лорд Кельвин пришел к выводу, что если Солнце постепенно сжимается и светит исключительно за счет высвобождения гравитационной энергии, то его возраст (и, следовательно, максимальный возраст Земли и остальных планет) может составить несколько сотен миллионов лет. Но в то время геологи не смогли ни подтвердить, ни опровергнуть эти оценки из-за отсутствия надежных методов геохронологии.

В середине первого десятилетия ХХ века Эрнест Резерфорд и американский химик Бертрам Болтвуд разработали основы радиометрической датировки земных пород, которая показала, что Перри был много ближе к истине. В 1920-х были найдены образцы минералов, чей радиометрический возраст приближался к 2 млрд лет. Позднее геологи не раз повышали эту величину, и к настоящему времени она выросла более чем вдвое — до 4,4 млрд. Дополнительные данные предоставляет исследование «небесных камней» — метеоритов. Почти все радиометрические оценки их возраста укладываются в интервал 4,4−4,6 млрд лет.

Современная гелиосейсмология позволяет непосредственно определить и возраст Солнца, который, по последним данным, составляет 4,56 — 4,58 млрд лет. Поскольку продолжительность гравитационной конденсации протосолнечного облака исчислялась всего лишь миллионами лет, можно уверенно утверждать, что от начала этого процесса до наших дней прошло не более 4,6 млрд лет. При этом солнечное вещество содержит множество элементов тяжелее гелия, которые образовались в термоядерных топках массивных звезд прежних поколений, выгоревших и взорвавшихся сверхновыми. Это означает, что протяженность существования Вселенной сильно превышает возраст Солнечной системы. Чтобы определить меру этого превышения, нужно выйти сначала в нашу Галактику, а затем и за ее пределы.

Наука
Парад планет 2020: что, где, когда, как и почему?

Доказательства, что Вселенная имеет возраст

Эдвин Хаббл поставил финальную точку в спорах, доказав наличие границ у Вселенной и их увеличение

Если верить теории Большого взрыва, то отсчет жизни Вселенной начинается в ту секунду, когда сжатая до микроскопических размеров сингулярность моментально расширилась. Со временем это пространство заполнили галактики и постепенно приняли тот вид, который люди наблюдают из телескопов.

Вселенная проделала долгий путь, на который ушли даже не миллионы, а миллиарды лет. Впервые о том, что у нее есть возраст, люди начали задумываться примерно в XVIII веке

Когда Земля была достаточно изучена, они обратили внимание к звездам и начали стремиться узнать как можно больше о них

Средневековая модель Вселенной

Изначально полагалось, что Вселенная бесконечна и не имеет возраста, являясь вечной. Но открытие законов термодинамики как минимум опровергло отсутствие возраста. Согласно им, тепло от горячих объектов переходит к более холодным, пока между ними не установится температурное равновесие. И если бы Вселенная существовала вечно, планеты, звезды и другие космические тела были бы одной температуры. Благодаря таким умозаключениям ученые того времени установили, что пространство вокруг имеет определенный возраст.

Интересный факт: ученые не исключают наличие в космосе областей, где объекты имеют одну температуру. Но они должны состоять из одинаковых материалов.

Доказать наличие возраста у Вселенной иным способом удалось в XX веке. Астроном Леметр выдвинул гипотезу, что пространство вокруг не бесконечно, имеет границы и постоянно увеличивается. Эдвин Хаббл поддержал его, поскольку заметил, что соседние галактики постепенно отдаляются от Млечного Пути. И если перемещаться назад во времени, можно оказаться во мгновении, когда размеры Вселенной были минимальными и еще не начали расти. Именно в этот момент и произошло ее рождение, соответственно она имеет возраст.

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону, Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

Покатай меня, большая черепаха!

Мифологема плавающей в безбрежном океане мировой черепахи, на спине которой покоится Земля, встречается у народов Древней Индии и Древнего Китая, в преданиях коренного населения Северной Америки. В разных вариантах мифа о гигантских «поддерживающих животных» упоминаются слон, змея и кит.

Космологические представления греков

Греческие философы заложили астрономические представления, которыми мы пользуемся и сегодня. Разные философы их школы имели свою точку зрения на модель мироздания. В большинстве своём они придерживались геоцентрической системы мира.

Геоцентризм — это убеждение, что неподвижная Земля находится в центре мироздания, а Солнце, Луна и звёзды вращаются вокруг неё.

Масштабную энциклопедию астрономических и математических знаний создал Птолемей. Описанная им геоцентрическая система мира была наиболее общепризнанной до коперниканского переворота в эпоху Возрождения. Аристотель также считал, что Земля неподвижна, указывая, что небесные тела прикреплены к твёрдым «небесным сферам».

Некоторые представители пифагорейской школы полагали, что и, Солнце, и Луна и планеты вращаются вокруг Центрального Огня, Гестии. Такую модель называют пироцентрической.

Аристарх Самосский предложил гелиоцентрическую систему мира, согласно которой Солнце — центральное небесное тело, а также предположил, что Земля меньше Солнца. Однако идея о том, что центр космоса — Земля, была популярна ещё долго.

Средневековая астрономия

В своих представлениях мыслители европейского средневековья опирались на работы античных философов, принимали системы Птолемея и Аристотеля. Главной концепцией мира оставался геоцентризм, средневековыми философами дополнялось и расширялось представление о небесных сферах. При этом античная мудрость дополнялась христианскими воззрениями.

На представления о мире основное влияние оказывала Церковь, а источниками знаний были монастыри.

Мир на средневековых изображениях — это мир глазами Бога. Все существующие вещи имеют глубокий духовный смысл. Большое развитие получает учение Платона о вещах и идеях, согласно которому все явления и объекты земного мира — это частные проявления божественных идей из горнего мира.

Для европейской средневековой миниатюры и скульптуры не важны пропорции и перспектива — важны символы и значения. Здесь могут одновременно происходить события из прошлого и будущего, а христианская символика пронизывает всё вокруг.

Подробнее об этом: Умберто Эко, «Искусство и красота в средневековой эстетике»

Теории Ренессанса

На протяжении сотен лет средневековая живопись оставалась плоской. И вдруг за очень краткий период Ренессанса стала объёмной. Это тесно связано с мировоззренческим подходом: мир стали изображать так, как он видится человеку, появилось учение о перспективе. Методы наблюдения за природой развивались и создавали всё более полную картину мира.

Хаббловское время

Но вопросом о возрасте мироздания занимался не только телескоп, названый в честь ученого, но и сам ученый, американский астроном Эдвин Хаббл. Ему удалось вывести свою известную формулу v = H*D, где v – скорость расширения Вселенной, D – расстояние от наблюдаемой галактики до наблюдателя, а H – постоянная Хаббла, которая обратно пропорциональна времени. О существовании постоянной Хаббла, как величины, определяющей зависимость между расстоянием до объекта и скоростью его удаления, впервые предположил священник астроном из Бельгии — Жорж Леметр. Согласно его идее, мир произошел из одного, условно говоря, атома, а после — стал расширяться. Позже, эта теория шутливо была названа «Большим Взрывом», но в дальнейшем этот термин прочно закрепился в космологии.

Э.П. Хаббл со снимком галактики Андромеда в руках

Спустя некоторое время, в 1929 году Э. Хаббл получил более точное значение упомянутой постоянной. Очевидно, что возраст мироздания напрямую зависит от постоянной Хаббла. Изначально, используя имеющуюся модель Вселенной, ученые рассчитали, что величину, обратно пропорциональную постоянной Хаббла нужно умножить на 2/3. Однако в таком случае искомая величина составляет около 1,2 млрд лет, число, близкое к тому, что предложили индуисты еще в 150-м году до н.э. Впрочем, к концу XX-го века уже были получены астрономические данные, которые говорили о возрасте 13-15 млрд лет.

Как выяснилось, причиной неправильной оценки стали неверные представления о расширении Вселенной. Только в 1999-м году две группы астрономов смогли доказать, что последние 5-6 млрд лет расширение космического пространства ускоряется, а не замедляется, как считалось ранее. По современным подсчетам этим методом ученые вывели значение 13,798 ± 0,037 лет.

Как появилась Вселенная для детей. Как появилась Вселенная?

Вопрос о том, как появилась Вселенная, всегда волновал людей. Это и не удивительно, ведь каждому хочется знать свои истоки. Над этим вопросом уже несколько тысячелетий бьются ученые, священники и писатели. Этот вопрос будоражит умы не только специалистов, но и каждого простого человека. Однако сразу стоит сказать, что стопроцентного ответа на вопрос о том, как появилась Вселенная, нет. Есть только теория, которую поддерживает большинство ученых.

Вот ее мы и разберем.

Поскольку все, что окружает человека, имеет свое начало, то не удивляет тот факт, что с древних времен человек пытался найти начало Вселенной. У человека эпохи Средневековья ответ на этот вопрос был достаточно прост – Вселенную создал Бог. Однако с развитием науки ученые начали подвергать сомнению не только вопрос о Боге, но и вообще о том, что Вселенная имеет начало.

В 1929 году благодаря американскому астроному Хабблу ученые вернулись к вопросу о корнях Вселенной. Дело в том, что Хаббл доказал, что галактики, из которых состоит Вселенная, постоянно двигаются. Кроме движения они еще и могут увеличиваться, а значит, увеличивается и Вселенная. А если она растет, выходит так, что был когда-то этап старта этого роста. А это означает, что у Вселенной есть начало.

Чуть позже уже британский астроном Хойл выдвинул сенсационную гипотезу: Вселенная возникла в момент Большого Взрыва . Его теория так и вошла в историю под таким названием. Суть идеи Хойла проста и сложна одновременно. Он считал, что когда-то существовал этап, который называют состоянием космической сингулярности, то есть время стояло на отметке нуль, а плотность и температура равнялись бесконечности. И в один момент случился взрыв, в результате которого нарушилась сингулярность, а следовательно плотность и температура изменились, начался рост материи, а значит время начало свой отчет. Позже сам Хойл назвал свою теорию малоубедительной, однако это не помешало ей стать самой популярной гипотезой происхождения Вселенной.

Когда случилось то, что Хойл назвал Большим Взрывом? Ученые проводили множество расчетов, в результате большинство сошлось на цифре 13,5 миллиардов лет. Именно тогда из ничего начала появляться  Всего за долю секунды Вселенная приобрела размер меньше атома, и процесс разрастания был запущен. Ключевую роль сыграла гравитация. Самое интересное, что если бы она была чуть сильнее, то ничего бы не возникло, максимум черная дыра. А если бы гравитация была немного слабее, то ничего бы не возникло вообще.Через несколько секунд после Взрыва температура во Вселенной немного уменьшилась, что дало толчок созданию вещества и антивещества. В результате начали появляться атомы. Так Вселенная перестала быть однотонной. Где-то атомов было больше, где-то меньше. В одних частях было горячее, в других температура была ниже. Атомы начали сталкиваться друг с другом, образовывая соединения, затем новые вещества, а позже тела. Часть объектов обладала большой внутренней энергией. Это были звезды. Они начали собирать вокруг себя (благодаря силе притяжения) другие тела, которые мы называем планетами. Так возникли системы, одной из которых является наша Солнечная.

Так сколь же живут звезды в космосе?

Все это время внутри звезды образуется гелий из слившихся ядер водорода, после чего гелий становится углеродом, а углерод — кислородом. Кислород перерождается в кремний, а тот уже в железо. И этот процесс идет ровно до тех пор, пока звезда снова не начинается сжиматься. Красные карлики, которые по своей сти очень невелики и ничего кроме гелия породить не могут, все горят огромное количество лет.

Срок жизни звезды и ее дальнейшую судьбу решает ее изначальная масса. У нее есть три выхода: превратить в нейтронную звезду или пульсар, в черную дыру или белого карлика.

Вообще все во Вселенной началось с самых первых звезд, что появились после Большого Взрыва, так считают многие ученые. возраст Вселенной составляет почти 14 миллиардов лет, а некоторые светила могут прожить и триллионы лет, их должно быть довольно много на всех этапах эволюции Вселенной. Например: в нашей галактике Млечный Путь более ста миллиардов звезд, а во Вселенной более ста миллиардов галактик. Если эти два числа помножить друг на друга — нам жизни не хватит,чтобы все звезды посмотреть и сосчитать, оценивая из возраст.

Одну из самых древних звезд астрономы нашли лет сто назад. Она называется совсем неромантично: HD140283.

Ее можно разглядеть даже через мощный бинокль или слабый телескоп. Кстати ее неофициальное название — Мафусаил. Это по имени человека, который согласно Библии прожил почти тысячу лет. МАфусаил чуть больше нашего Солнца и находится в созвездии Весы. Расстояние до него составляет 190 световых лет. его отнесли ко второму поколению звезд от Большого Взрыва с небольшим содержанием металлов. Появился он на свет через несколько миллионов лет после этого знаменательного события. первоначально ему дали 16 миллиардов лет, но тогда получается, что оно старше Вселенной и возраст урезали то 13,3 миллиардов.

В тех же Весах есть похожая звезда — но уже красный гигант — НЕ1523-0901. Ее нашил в 2007 году и вот она оценена как самая старая — ее возраст чуть младше Вселенной — на полмиллиарда лет. Кстати эта звезда находится от нас на расстоянии 7000 лет.

А в 2017 году астрономы из Австралии в Южном полушарии нашли самую древнюю звезду — еще старше предыдущей. Ну, атк они заявили. Расположена она в 6000 световых лет от нас и ее возраст равен возрасту Вселенной, а именно 13,7 миллиардов лет. Но, это не точно — анализ все еще идет.

На данный момент ученые продолжают искать звезду, равную возрасту Вселенной. Рано или поздно ее должны обнаружить, перебирая все эти светящиеся точки на небе. Наше Солнце совсем юное по сравнению с ними и ему еще жить и жить.

Надеемся на вопрос: сколько живут звезды в космосе мы ответили.

Вселенной миллионы лет?

К 18 веку существовало две основные теории, которые касаются возраста Вселенной.

Первая – Вселенной миллионы лет.

Вторая теория, первоначально опубликованная в книге Сигура Брабанта «Вечность мира» в 13-м веке, гласила, что Вселенная не имеет ни начала, ни конца — она вечна.

Сравнение геоцентрической и гелиоцентрической моделей Вселенной

В середине 19 века наши представления о Вселенной начали коренным образом меняться.

Физики начали разрабатывать первые теории термодинамики — раздел физики, который занимается температурой и теплом. Была создана теория энтропии, которая гласит, что если бы у Вселенной не было ни начала, ни конца, тогда вся материя внутри неё имела бы одинаковую температуру.

Это противоречило современным теориям, так как к этому моменту было хорошо известно, что в известной Вселенной были большие перепады температур.

Лишь в начале 20-го века работы таких выдающихся ученых, как Альберт Эйнштейн и Александр Фридман, основали теорию о том, что Вселенная не может находиться в статичном состоянии и что она должна либо расширяться, либо сокращаться.

Это, конечно, изменило все, и в том числе новые теории относительно возраста Вселенной. Благодаря достижениям в технологии телескопов мы смогли глубже взглянуть на Вселенную.

Примерно в этот момент один из самых важных астрономов всех времен, американец по имени Эдвин Хаббл, провел наблюдения за отдаленными скоплениями звезд, которые, как было установлено, являются другими галактиками.

Альберт Эйнштейн

И Хаббл, и бельгийский астроном по имени Жорж Леметр предложили и доказали теорию, которая установила, что Вселенная находится в состоянии расширения.

Как прямой результат этого мы начали получать некоторое реальное понимание возраста Вселенной. Хаббл предположил, что началу Вселенной было около 2 миллиардов лет.

Космические ритмы

30 июня 2001 года NASA отправило в космос зонд Explorer 80, через два года переименованный в WMAP, Wilkinson Microwave Anisotropy Probe. Его аппаратура позволила регистрировать температурные флуктуации микроволнового реликтового излучения с угловым разрешением менее трех десятых градуса. Тогда уже было известно, что спектр этого излучения почти полностью совпадает со спектром идеального черного тела, нагретого до 2,725 К, а колебания его температуры при «крупнозернистых» измерениях с угловым разрешением в 10 градусов не превышают 0,000036 К. Однако на «мелкозернистой» шкале зонда WMAP амплитуды таких флуктуаций были в шесть раз больше (около 0,0002 К). Реликтовое излучение оказалось пятнистым, тесно испещренным чуть более и чуть менее нагретыми участками.

Флуктуации реликтового излучения порождены колебаниями плотности электронно-фотонного газа, который некогда заполнял космическое пространство. Она упала почти до нуля приблизительно через 380 000 лет после Большого взрыва, когда практически все свободные электроны соединились с ядрами водорода, гелия и лития и тем самым положили начало нейтральным атомам. Пока этого не произошло, в электронно-фотонном газе распространялись звуковые волны, на которые влияли гравитационные поля частиц темной материи. Эти волны, или, как говорят астрофизики, акустические осцилляции, наложили отпечаток на спектр реликтового излучения. Этот спектр можно расшифровать при помощи теоретического аппарата космологии и магнитной гидродинамики, что дает возможность по‑новому оценить возраст Вселенной. Как показывают новейшие вычисления, его наиболее вероятная протяженность составляет 13,72 млрд лет. Она и считается сейчас стандартной оценкой времени жизни Вселенной

Если принять во внимание все возможные неточности, допуски и приближения, можно заключить, что, согласно результатам зонда WMAP, Вселенная существует от 13,5 до 14 млрд лет

Таким образом, астрономы, оценивая возраст Вселенной тремя различными способами, получили вполне совместимые результаты. Поэтому теперь мы знаем (или, выражаясь осторожней, думаем, что знаем), когда возникло наше мироздание — во всяком случае, с точностью до нескольких сотен миллионов лет. Вероятно, потомки внесут решение этой вековой загадки в перечень самых замечательных достижений астрономии и астрофизики.

Статья «Возраст мироздания» опубликована в журнале «Популярная механика»
(№5, Май 2012).

Будущее Вселенной

Возможные варианты будущего Вселенной

Если Вселенная имеет возраст, и миллиарды лет назад произошло ее рождение, то значит, наступит время, когда ее не станет. Еще с 90-х ученые, изучающие космос, пытаются прогнозировать его будущее и установить, что произойдет, когда он перестанет существовать.

Все предположения строятся на обязательном условии, что теория Большого взрыва верна. Это дает начальные данные о вселенной, помогает построить представление об устройстве пространства и спрогнозировать, что произойдет дальше.

Пример большого сжатия и рождения новой Вселенной

Сейчас существует три теории будущего Вселенной:

  1. Большое сжатие. После того, как пространство расширится до определенного размера, оно начнет сжиматься. Это возможно, если плотность пространства будет выше допустимого. Тогда границы Вселенной начнут уменьшаться, ровно как и расстояние между объектами. Процесс будет продолжаться до тех пор, пока она не превратится в небольшую сингулярность, существовавшую до Большого взрыва.
  2. Большое замораживание. Если плотность не привысит максимальную, то Вселенная продолжит расширяться до неограниченных размеров. Однако постепенно в ней израсходуется запас энергии и газа. Нейтронные звезды превратятся в черные дыры, остальные, потратив все тепло, станут белыми карликами. Постепенно температура в пространстве начнет падать, пока не установится на отметке абсолютного нуля.
  3. Большой разрыв. Все объекты во Вселенной притягиваются, но это не мешает галактикам постепенно отодвигаться друг от друга. Ученые полагают, что при определенных обстоятельствах объекты в пространстве смогут отдалиться на такие расстояния, что сила притяжения станет равна нулю.

Каким в итоге окажется будущее Вселенной, пока неизвестно. Поскольку она еще не закончила процесс формирования, конец для нее наступит через миллиарды лет.

Открытия Галилео Галилея

Галилей защищал коперниканство, придерживаясь гелиоцентрической системы мира, а также настаивал на том, что Земля обладает суточным вращением (крутится вокруг своей оси). Это привело его к знаменитым разногласиям с Римской церковью, которая теорию Коперника не поддерживала.

Галилей построил собственный телескоп, обнаружил спутники Юпитера и объяснил свечение Луны отражённым Землёй солнечным светом.

Всё это было свидетельствами, что Земля имеет ту же природу, что и другие небесные тела, которые тоже обладают «лунами» и движутся. Даже Солнце оказалось не идеальным, что опровергало греческие представления о совершенстве горнего мира — на нём Галилей разглядел пятна.

Модель Вселенной Ньютона

Исаак Ньютон открыл закон всемирного тяготения, разработал единую систему земной и небесной механики и сформулировал законы динамики — эти открытия легли в основу классической физики. Ньютон доказал законы Кеплера с позиции гравитации, заявил, что Вселенная бесконечна и сформулировал свои представления о материи и плотности.

Его работа «Математические начала натуральной философии» 1687 года обобщила результаты исследований предшественников и заложила метод создания модели Вселенной с помощью математического анализа.

ХХ век: всё относительно

Ещё по этой теме

«Жизнь в невозможном мире»: физик-теоретик о мироздании

Качественным прорывом в представлении человека о мире в ХХ веке стали положения общей теории относительности (ОТО), которые вывел в 1916 году Альберт Эйнштейн. Согласно теории Эйнштейна, пространство не является чем-то неизменным, время имеет начало и конец и может течь по-разному в разных условиях.

ОТО до сих пор наиболее влиятельная теория пространства, времени, движения и гравитации — то есть, всего, что составляет физическую реальность и принципы мира. Теория относительности утверждает, что пространство должно либо расширяться, либо сужаться. Так оказалось, что Вселенная динамична, а не стационарна.

Подробнее об этом — в книге Митио Каку «Космос Эйнштейна: Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени». 

Американский астроном Эдвин Хаббл доказал, что наша галактика Млечный Путь, в которой находится Солнечная система — лишь одна из сотен миллиардов других галактик Вселенной. Исследуя дальние галактики, он сделал вывод о том, что они разбегаются, удаляясь друг от друга, и предположил, что Вселенная расширяется.

Если исходить из концепции постоянного расширения Вселенной, выходит, когда-то она находилась в сжатом состоянии. Событие, которое обусловило переход от очень плотного состояния материи к расширению, получило название Большого Взрыва.

ХХI век: тёмная материя и Мультивселенная

Сегодня мы знаем, что Вселенная расширяется ускоренно: этому способствует давление «тёмной энергии», которая борется с силой тяготения. «Тёмная энергия», природа которой до сих пор не ясна, составляет основную массу Вселенной. Чёрные дыры представляют собой «гравитационные могилы», в которых исчезают вещество и излучение, и в которые, предположительно, превращаются погибшие звёзды.

Возраст Вселенной (время с начала расширения) предположительно оценивают в 13-15 миллиардов лет.

Это может быть интересно

Красота Вселенной

Мы осознали свою неуникальность — ведь вокруг столько звёзд и планет. Поэтому вопрос возникновения жизни на Земле современными учёными рассматривается в контексте того, почему вообще возникла Вселенная, где такое стало возможным.

Галактики, звёзды и вращающиеся вокруг них планеты, да и сами атомы существуют только потому, что толчок тёмной энергии в момент Большого взрыва оказался достаточным, чтобы Вселенная не свернулась снова, и в то же время таким, чтобы пространство не разлеталось слишком сильно. Вероятность такого очень мала, поэтому некоторые современные физики-теоретики предполагают, что существует множество параллельных Вселенных. 

Впрочем, опровергнуть это с помощью эксперимента невозможно, поэтому другие учёные полагают, что концепцию Мультивселенной следует считать скорее философской.

Подробнее об этом — в книге Алана Лайтмана «Случайная Вселенная: мир, который мы думали, что понимаем».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector