Ударная волна

Регулярное и маховское отражение волн.

В зависимости от угла падения ударной волны на препятствие волна может отражаться непосредственно на поверхности препятствия или на некотором расстоянии от него. Во втором случае отражение называется трехволновым, поскольку в этом случае возникает третья ударная волна, соединяющая падающую и отраженную волны с поверхностью препятствия.

Впервые зафиксированное австрийским ученым Эрнстом Махом в 1878, трехволновое отражение получило также название маховского, для отличия от двухфронтового (или регулярного) отражения.

Выполненный Махом эксперимент, позволивший обнаружить трехволновой режим отражения, заключался в следующем (рис. 5): в двух точках, расположенных на некотором расстоянии друг от друга, одновременно проскакивали две искры, порождавшие две сферических ударных волны.

Распространяясь над поверхностью, зачерненной сажей, эти волны оставляли отчетливый след точек их пересечения, начинающийся посередине между точками инициализации волн, а затем идущий по срединному перпендикуляру отрезка, соединяющего эти точки инициализации. Далее отрезок на концах разделялся на две симметрично расходящиеся линии. Полученная картина соответствует тому, что на ранней стадии взаимодействия ударные волны отражаются друг от друга так, как будто происходит отражение в регулярном режиме от воображаемой плоскости, расположенной посередине между точками инициализации волн. Затем образуется скачок Маха, соединяющий соответствующие точки кривых, приведенных на рис. 3. Поскольку на зачерненной поверхности остаются лишь траектории точек пересечения волн, Мах продемонстрировал впечатляющую проницательность, сумев расшифровать смысл полученных следов.

Эпидемиологическая и экологическая обстановка

Ядерный взрыв в населённом пункте, как и другие катастрофы, связанные с большим количеством жертв, разрушением вредных производств и пожарами, приведёт к тяжёлым условиям в районе его действия, что будет вторичным поражающим фактором. Люди, даже не получившие значительных поражений непосредственно от взрыва, с большой вероятностью могут погибнуть от инфекционных заболеваний и химических отравлений. Велика вероятность сгореть в пожарах или просто расшибиться при попытке выйти из завалов.

Ядерная атака атомной электростанции может поднять в воздух значительно больше радиоактивных веществ, чем может дать сама бомба. При прямом попадании заряда и испарении реактора или хранилища радиоактивных материалов площадь земель, в течение многих десятков лет непригодных для жизни, будет в сотни и тысячи раз больше площади заражения от наземного ядерного взрыва. Например, при испарении реактора мощностью 100 МВт ядерным взрывом в 1 мегатонну, и просто при наземном ядерном взрыве 1 Мт, соотношение площадей территории со средней дозой 2 рад (0,02 Грей) в год будет следующим: через 1 год после атаки — 130 000 км² и 15 000 км²; через 5 лет — 60 000 км² и 90 км²; через 10 лет — 50 000 км² и 15 км²; через 100 лет — 700 км² и 2 км².

Классификация

Приведённая высота (глубина) заряда в метрах на тонны тротилового эквивалента в кубическом корне (в скобках пример для взрыва мощностью 1 мегатонна), (С. 26):

  1. На малой глубине: менее 0,3 м/т1/3 — вода испаряется до поверхности и столб воды (взрывной султан) не образуется, 90 % радиоактивных загрязнений уходит с облаком, 10 % остаётся в воде (менее 30 м)
  2. C образованием взрывного султана и облака султана: 0,25–2,2 м/т1/3 (25–220 м)
  3. Глубоководный: глубже 2,5 м/т1/3 — когда образующийся пузырь выходит на поверхность с образованием султана, но без облака, 90 % радиоактивных продуктов остаётся в воде в районе взрыва и не более 10 % выходит с брызгами базисной волны (глубже 250 м).

Возможен также переходный случай между подводным и наземным ядерным взрывом, при котором образуется подводная донная воронка и происходит выброс воды и грунта:

при подводном придонном взрыве(С. 308), причём если взрыв в неглубоком водоёме и на расстоянии от дна до 0,1–0,2 м/т1/3 (до 10–20 м), то грунт из подводной воронки попадает в облако взрыва и служит источником заражения.

Общие макроскопические свойства ударных волн

Термодинамика ударных волн

С макроскопической точки зрения ударная волна представляет собой воображаемую поверхность, на которой термодинамические величины среды (которые, как правило, изменяются в пространстве непрерывно) испытывают устранимые особенности: конечные скачки. При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с одной-единственной характеристикой ударной волны, числом Маха. Математическое уравнение, связывающее термодинамические величины до и после прохождения ударной волны, называется ударной адиабатой, или адиабатой Гюгонио.

Ударные волны не обладают свойством аддитивности в том смысле, что термодинамическое состояние среды, возникающее после прохождения одной ударной волны, нельзя получить последовательным пропусканием двух ударных волн меньшей интенсивности.

Происхождение ударных волн

Воздействие ударной волны, возникшей при выстреле из пушки, на водяную поверхность

Звук представляет собой колебания плотности, скорости и давления среды, распространяющиеся в пространстве. Уравнение состояния обычных сред таково, что в области повышенного давления скорость распространения возмущений малой амплитуды возрастает. Это неизбежно приводит к явлению «опрокидывания» возмущений конечной амплитуды, которые и порождают ударные волны.

В силу этого механизма, ударная волна в обычной среде — это всегда волна сжатия.

Описанный механизм предсказывает неизбежное превращение любой звуковой волны в слабую ударную волну. Однако в повседневных условиях для этого требуется слишком большое время, так что звуковая волна успевает затухнуть раньше, чем нелинейности становятся заметны. Для быстрого превращения колебания плотности в ударную волну требуются сильные начальные отклонения от равновесия. Этого можно добиться либо созданием звуковой волны очень большой громкости, либо механически, путём околозвукового движения объектов в среде. Именно поэтому ударные волны легко возникают при взрывах, при около- и сверхзвуковых движениях тел, при мощных электрических разрядах и т. д.

Таблица 1. Значения коэффициента k приведения взрывчатого вещества к тротилу

ВВ Тротил Тритонал Гексоген ТЭН Аммонал Порох ТНРС Тетрил
k 1.0 1.53 1.30 1.39 0.99 0.66 0.39 1.15

Выражение (1) составлено для взрыва, при котором ударная волна распространяется во все стороны от точки взрыва беспрепятственно, т.е. в виде сферы. Очень часто на практике взрыв происходит на некоторой поверхности, например, на земле. При этом ударная волна распространяется в воздухе в виде полусферы.

Для взрывов на абсолютно твердой поверхности вся выделившаяся при взрыве энергия распространяется в пределах полусферы и, следовательно, значение массы взрывающегося вещества как бы удваивается (в определенных случаях можно говорить о сложении прямой и отраженной волны).

Для взрыва на не абсолютно твердой поверхности, например, на грунте, часть энергии расходуется на образование воронки. Учет этого расхода выполняется с помощью коэффициента ƞ, значения которого приведены в Таблице 2. Чем меньше подстилающая поверхность позволяет затрачивать энергию на образование воронки, тем ближе значение коэффициента ƞ к 1. Другой предельный случай соответствует ситуации, когда подстилающая поверхность беспрепятственно пропускает энергию взрыва, например, при взрыве в воздухе. В этом случае значение коэффициента равно 0.5.

С учетом изложенного значение MT в общем случае определяется по формуле:

Что можно предпринять

Рассмотрим методы защиты от ударной волны. Чтобы уберечься от радиационного воздействия, используют различные защитные сооружения: убежища, подвалы, станции. При этом все помещения должны обладать высоким коэффициентом защитного действия. Также следует принимать радиозащитные препараты.

Различают следующие виды защитных сооружений:

  1. Убежища. Предназначены для укрытия людей от всех поражающих факторов: отравляющих веществ, бактериальных средств, критических температур, опасных газов и радиации. Такие помещения должны быть оборудованы защитной герметической дверью, тамбурами, основным помещением, кладовой для продуктов, медицинской комнатой, аварийным выходом и камерой вентиляции.
  2. К самым примитивным укрытиям относятся открытые и перекрытые щели. Они строятся населением с использованием любых подручных материалов. Примитивные укрытия способны уменьшить действие от проникающей радиации и излучения в 200-300 раз.

Соблюдение мер безопасности и плана эвакуации существенно повышают шансы на сохранение человеческой жизни и здоровья.

Световое излучение

Основная статья: Световое излучение (поражающий фактор)

Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна

Образование головной ударной волны (эффект Маха) при взрыве 20 кт

Разрушения в Хиросиме в результате атомной бомбардировки

Жертва ядерной бомбардировки Хиросимы

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

Проникающая радиация

Запрос «» перенаправляется сюда. На эту тему нужно создать отдельную статью.

Проникающая радиация (ионизирующее излучение) представляет собой гамма-излучение и поток нейтронов, испускаемых из зоны ядерного взрыва в течение единиц или десятков секунд.

Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно поглощается атмосферой. Проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов, однако ядерный заряд может быть специально сконструирован таким образом, чтобы увеличить долю проникающей радиации для нанесения максимального ущерба живой силе (так называемое нейтронное оружие). На больших высотах, в стратосфере и космосе проникающая радиация и электромагнитный импульс — основные поражающие факторы.

Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, электронных, оптических и других приборах за счет нарушения кристаллической решетки вещества и других физико-химических процессов под воздействием ионизирующих излучений.

Защитой от проникающей радиации служат различные материалы, ослабляющие гамма-излучение и поток нейтронов. Разные материалы по-разному реагируют на эти излучения и по-разному защищают.

От гамма-излучения хорошо защищают материалы, имеющие элементы с высокой атомной массой (железо, свинец, низкообогащённый уран), но эти элементы очень плохо ведут себя под нейтронным излучением: нейтроны относительно хорошо их проходят и при этом генерируют вторичные захватные гамма-лучи, а также активируют радиоизотопы, надолго делая саму защиту радиоактивной (например, железную броню танка; свинец же не проявляет вторичной радиоактивности). Пример слоёв половинного ослабления проникающего гамма-излучения: свинец 2 см, сталь 3 см, бетон 10 см, каменная кладка 12 см, грунт 14 см, вода 22 см, древесина 31 см.

Нейтронное излучение в свою очередь хорошо поглощается материалами, содержащими лёгкие элементы (водород, литий, бор), которые эффективно и с малым пробегом рассеивают и поглощают нейтроны, при этом не активируются и гораздо меньше выдают вторичное излучение. Слои половинного ослабления нейтронного потока: вода, пластмасса 3 — 6 см, бетон 9 — 12 см, грунт 14 см, сталь 5 — 12 см, свинец 9 — 20 см, дерево 10 — 15 см. Лучше всех материалов поглощают нейтроны водород (но в газообразном состоянии он имеет малую плотность), гидрид лития и карбид бора.

Идеального однородного защитного материала от всех видов проникающей радиации нет, для создания максимально лёгкой и тонкой защиты приходится совмещать слои различных материалов для последовательного поглощения нейтронов, а затем первичного и захватного гамма-излучения (например, многослойная броня танков, в которой учтена и радиационная защита; защита оголовков шахтных пусковых установок из ёмкостей с гидратами лития и железа с бетоном), а также применять материалы с добавками. Универсальны широко применяемые в строительстве защитных сооружений бетон и увлажнённая грунтовая засыпка, содержащие и водород и относительно тяжёлые элементы. Очень хорош для строительства бетон с добавкой бора (20 кг B4C на 1 м³ бетона), при одинаковой толщине с обычным бетоном (0,5 — 1 м) он обеспечивает в 2 — 3 раза лучшую защиту от нейтронной радиации и подходит для защиты от нейтронного оружия.

Головная ударная волна вокруг Солнечной системы

Диаграмма, изображающая положение Вояджера-1 в . В настоящее время Вояджер-2 также находится в мантии.

Ещё в 1961 году американский астрофизик Юджин Паркер предположил, что на солнечную систему набегает дозвуковой поток газа межзвездной среды, который газодинамическим образом взаимодействует с плазмой солнечного ветра. Он предположил также, что для описания картины возникающего при этом течения справедливы гидродинамические уравнения Эйлера. Построенная Паркером модель делит всю область течения на три подобласти: сверхзвуковой солнечный ветер, дозвуковой солнечный ветер, прошедший через гелиосферную ударную волну, и поток несжимаемого (скорость много меньше скорости звука) межзвездного газа, который отделяется от солнечного ветра контактной поверхностью, названной впоследствии .

Альтернативная модель, предложенная в 1970 году советскими физиками В. Б. Барановым, К. В. Краснобаевым и А. Г. Куликовским, основана на сверхзвуковом обтекании Солнечной системы межзвездным газом. Использовалось предположение, что направление движения межзвездного газа относительно Солнечной системы и его скорость имеют то же направление к апексу и ту же скорость движения, что и Солнце (относительно ближайших звёзд). Эта скорость составляет 20 км/с, а направление на апекс — угол 53° к плоскости эклиптики. При температуре межзвездного газа порядка 10 000K величина скорости 20 км/с является сверхзвуковой с числом Маха (отношением скорости к скорости звука) М=2. В такой модели по сравнению с моделью Паркера имеется ещё один физический элемент, а именно головная ударная волна, которая создает дополнительную область сжатого в этой ударной волне межзвездного газа.

По словам представителей НАСА Роберта Немирова (Robert Nemiroff) и Джерри Бонелли (Jerry Bonnell), головная ударная волна вокруг солнечной системы может находится на расстоянии около 230 а.е. от Солнца. Тем не менее, данные, полученные в 2012 году со спутника IBEX и подтверждённые результатами с Вояджеров, показывают, что относительная скорость гелиосферы и местного межзвездного магнитного поля не позволит сформироваться головной ударной волне в той области галактики, которою Солнце проходит в настоящее время.

Ударная труба.

Простейшая ударная труба состоит из камер высокого и низкого давления, разделенных диафрагмой (рис. 2).

После разрыва диафрагмы в камеру низкого давления устремляется толкающий газ из камеры высокого давления, формируя волну сжатия, которая, быстро увеличивая свою крутизну, образует ударную волну. За ударной волной в камеру низкого давления движется контактный разрыв. Одновременно в камеру высокого давления распространяется волна разрежения.

Первые ударные трубы появились в конце 19 в., с тех пор развитие техники ударных труб позволило превратить ударные волны в самостоятельный инструмент для исследований. В ударной трубе можно получить газ, однородно нагретый до 10 000° К и выше. Такие возможности широко используются при изучении многих химических реакций, различных физических процессов. В астрофизических исследованиях основными данными являются спектры звезд. Точность интерпретации этих спектров определяется результатами сравнения со спектрами, полученными на ударных трубах.

С конца 1920-х стала развиваться сверхзвуковая аэродинамика. Первая сверхзвуковая аэродинамическая труба в США (в Национальном консультативном комитете по аэронавтике, NACA) была создана к 1927, в СССР – в 1931–1933 (в Центральном аэрогидродинамическом институте), это открыло новые возможности экспериментального исследования ударных волн. Сверхзвуковое течение качественно отличается от дозвукового, в первую очередь, наличием ударных волн. Возникновение ударных волн приводит к значительному повышению сопротивления движущихся тел (столь значительному, что возник термин – волновой кризис), а также к изменению действующих на эти тела тепловых нагрузок. Вблизи ударных волн эти нагрузки очень велики и, если не предприняты соответствующие меры защиты, может произойти прогорание корпуса летательного аппарата и его разрушение. Крайне важная проблема в аэродинамике – предотвращение бафтинга (появления нестационарных ударных волн у поверхности летательного аппарата). При бафтинге действие динамических и тепловых нагрузок становится переменным по времени и месту приложения, противостоять таким нагрузкам намного сложнее.

Оценка степени повреждения отдельно стоящих зданий

Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.

Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.

Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.

По допустимому давлению при взрыве

Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т.е. учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1.5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.

(16)

где: R > Rбез — безопасное расстояние в метрах;

MT — тротиловый эквивалент взрывчатого вещества в килограммах;

К — коэффициент, зависящий от условий взрыва.

Значения коэффициента К при размещении людей без укрытий устанавливаются в диапазоне от 30 до 45 для разных типов взрывов. В исключительных случаях, когда требуется максимально возможное приближение персонала к месту взрыва, Rбез может быть определено при коэффициенте 15, а например при укрытии людей в блиндажах К составляет 9,3.

Единые правила определения безопасных расстояний предусматривают правила расчета этих расстояний не только для человека, но и для зданий (сооружений), и для различных видов взрывов.

Защитное заземление

Существуют следующие способы защиты, применяемые отдельно или в сочетании друг с другом: защитное заземление, зануление, защитное отключение, электрическое разделение сетей разного напряжения, применение малого напряжения, изоляция токоведущих частей, выравнивание потенциалов.

В электроустановках (ЭУ) напряжением до 1000 В с изолированной нейтралью и в ЭУ постоянного тока с изолированной средней точкой применяют защитное заземление в сочетании с контролем изоляции или защитное отключение.

В этих электроустановках сеть напряжением до 1000 В, связанную с сетью напряжением выше 1000 В через трансформатор, защищают от появления в этой сети высокого напряжения при повреждении изоляции между обмотками низшего и высшего напряжения пробивным предохранителем, который может быть установлен в каждой фазе на стороне низшего напряжения трансформатора.

В электроустановках напряжением до 1000 В с глухозаземленной нейтралью или заземленной средней точкой в ЭУ постоянного тока применяется зануление или защитное отключение. В этих ЭУ заземление корпусов электроприемников без их заземления запрещается.

Защитное отключение применяется в качестве основного или дополнительного способа защиты в случае, если не может быть обеспечена безопасность применением защитного заземления или зануления или их применение вызывает трудности.

Ударные волны в специальных условиях

Гидрогазоаналогия

  • Ударная волна, путём нагрева среды, может вызвать экзотермическую химическую реакцию, что, в свою очередь, отразится и на свойствах самой ударной волны. Такой комплекс «ударная волна + реакция горения» носит название волны детонации.
  • В астрофизических объектах ударная волна может двигаться со скоростями, близкими к скорости света. В этом случае ударная адиабата модифицируется.
  • Ударные волны в замагниченной плазме также обладают своими характерными особенностями. При переходе через разрыв, изменяется также и величина магнитного поля, на что тратится дополнительная энергия. Это влечёт за собой существование максимально возможного коэффициента сжатия плазмы при сколь угодно сильных ударных волнах.
  • Касательные ударные волны представляют собой смешанного (нормального и тангенциального) типа.

Условия на фронте ударной волны.

При переходе через ударную волну должны выполняться общих законов сохранения массы, импульса и энергии. Соответствующие условия на поверхности волны – непрерывность потока вещества, потока импульса и потока энергии:

, ,

(r – плотность, u – скорость, p – давление, h – энтальпия, теплосодержание) газа. Индексом «0» отмечены параметры газа перед ударной волной, индексом «1» – за ней. Эти условия носят название условий Ренкина – Гюгонио, поскольку первыми из опубликованных работ, где были сформулированы эти условия, считаются работы британского инженера Вильяма Ренкина (1870) и французского баллистика Пьера Анри Гюгонио (1889).

Условия Ренкина – Гюгонио позволяют получить давление и плотность за фронтом ударной волны в зависимости от начальных данных (интенсивности ударной волны и давления и плотности перед ней):

,

h – энтальпия газа (функция r и p). Эта зависимость носит название адиабаты Гюгонио, или ударной адиабаты (рис. 1).

Фиксируя на адиабате точку, соответствующую начальному состоянию перед ударной волной, получаем все возможные состояния за волной заданной интенсивности. Состояниям за скачками сжатия отвечают точки адиабаты, расположенные левее выбранной начальной точки, за скачками разрежения – правее.

Анализ адиабаты Гюгонио показывает, что давление, температура и скорость газа после прохождения скачка сжатия неограниченно возрастают при увеличении интенсивности скачка. В это же время плотность возрастает лишь в конечное число раз, сколь бы ни была велика интенсивность скачка. Количественно увеличение плотности зависит от молекулярных свойств среды, для воздуха максимальный рост 6 раз. При уменьшении амплитуды УВ она вырождается в слабый (звуковой) сигнал.

Из условий Ренкина – Гюгонио также можно получить уравнение прямой в плоскости , p

,

называемой прямой Рэлея – Михельсона. Угол наклона прямой определяется значением скорости газа перед ударной волной u, сечение адиабаты Гюгонио этой прямой дает параметры газа за фронтом ударной волны. Михельсон (в России) ввел это уравнение при исследовании воспламенения гремучих газовых смесей в 1890, работы британца лорда Рэлея по теории ударных волн относятся к 1910.

Взаимодействие ударных волн с пограничным слоем.

В пограничном слое, возникающем вблизи ограничивающих поток стенок, происходит торможение потока до нулевых скоростей на стенке (условие «прилипания»). Фронт ударной волны, взаимодействующей с пограничным слоем, претерпевает изменения: образуется, так называемый, l-образный скачок (лямбда-образный скачок, по сходству конфигурации такого скачка с греческой буквой лямбда, рис. 7).

При течении в канале с развитыми пограничными слоями у стенок прямой скачок заменяется Х-образным скачком, составленным двумя l-образными скачками (обычным и перевернутым). За фронтом такого скачка происходит нарастание толщины пограничного слоя, пограничный слой турбулизуется, могут образовываться другие Х-образные скачки и, в конце концов, может возникнуть ситуация, когда падение скорости потока от сверхзвуковой до дозвуковой происходит в сложной системе скачков и неодномерного течения – псевдоскачке.

Теория мелкой воды.

Сверхзвуковое течение, как оказалось, аналогично течению воды (или другой несжимаемой жидкости) в открытом водоеме, глубина которого достаточно мала («мелкая» вода) и на жидкость действует сила тяжести. Формально аналогия проявляется в том, что уравнения, описывающие соответствующие движения и газа, и воды, оказываются одинаковыми. Используя это свойство можно совершенно ясно наблюдать явления, происходящие в сверхзвуковом потоке. Например, в обычном быстротекущем ручейке отчетливо видны аналоги отошедших и присоединенных ударных волн, картины процесса возникновения ударной волны при обтекании криволинейной стенки, пересечения и отражения ударных волн, распространения возмущений от точечного источника – линий Маха, картины истечения сверхзвуковых струй в область покоящегося газа, Х-образных скачков и т.п

Впервые обратившим внимание на такую аналогию считается Д.Рябушинский (Франция, 1932)

Андрей Богданов

Электромагнитный импульс

Основная статья: Электромагнитный импульс (поражающий фактор)

Зарево, возникшее в результате высотного ядерного взрыва Starfish Prime

При ядерном взрыве в результате сильных токов в ионизированном радиацией и световым излучением в воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого, большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.

Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км (см., например, эксперимент по высотному подрыву ядерного заряда Starfish Prime).

Возникновение ЭМИ происходит следующим образом:

  1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.
  2. Гамма-кванты рассеиваются на свободных электронах, что приводит к появлению быстро изменяющегося токового импульса в проводниках.
  3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

Под воздействием ЭМИ во всех не экранированных протяжённых проводниках индуцируется напряжение, и чем длиннее проводник, тем выше напряжение. Это приводит к пробою изоляции и выходу из строя электроприборов, связанных с кабельными сетями, например, трансформаторные подстанции и т. д.

Большое значение ЭМИ имеет при высотном взрыве от 100 км и более. При взрыве в приземном слое атмосферы не оказывает решающего поражения малочувствительной электротехники, его радиус действия перекрывается другими поражающими факторами. Но зато оно может нарушить работу и вывести из строя чувствительную электроаппаратуру и радиотехнику на значительных расстояниях — вплоть до нескольких десятков километров от эпицентра мощного взрыва, где прочие факторы уже не приносят разрушающий эффект. Может вывести из строя незащищённую аппаратуру в прочных сооружениях, рассчитанных на большие нагрузки от ядерного взрыва (например ШПУ). На людей поражающего действия не оказывает.

Принцип работы

Принцип действия – объединение зарядов для создания критической массы и последующей цепной реакции

Принцип работы атомной бомбы основан на цепной реакции распада тяжелых ядер или термоядерном синтезе легких. В ходе данных процессов выделяется огромное количество энергии, которая и превращает бомбу в оружие массового поражения.

Принцип взрыва ядерной бомбы имеет несколько поражающих факторов:

  • световая вспышка;
  • радиоактивное заражение;
  • ударная волна;
  • проникающая радиация;
  • электромагнитный импульс.

Опасность представляет и радиация: в течение минуты ее проникающая способность самая высокая. В дальнейшем она вызывает лучевую болезнь у людей и животных.

Ударная волна имеет высокую степень поражения на расстоянии в несколько сотен метров от эпицентра. В данном радиусе не остается ничего живого или целого. По мере удаления от центра, снижается и степень повреждений.

Электромагнитный импульс (ЭМИ) — самое «безобидное» следствие ядерного взрыва, приводит к отключению электроники. Вред живым организмам наносит в случае их зависимости от электронных аппаратов. При этом ламповая и фотонная аппаратура имеет хорошую устойчивость к ЭМИ.

Общая характеристика задач оценки

Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:

вид и количество взрывчатого вещества (ВВ);
условия взрыва;
расстояние от места взрыва до места оценки его последствий;
параметры ударной волны;
степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.

Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.

Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов

Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования

Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.

Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т.е. требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).

Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.

Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.

Расчетные соотношения, используемые при решении задач.

Тротиловый эквивалент массы ВВ.

Количество взрывчатого вещества или его массу МBB при проведении расчетов выражают через тротиловый эквивалент МТ. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector