«добрая» нейтронная бомба: 4 мифа об оружии массового поражения
Содержание:
История
Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:
- по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
- по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
- по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
- по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.
Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 713 дней].
Взрывной характер
Ядро урана содержит 92 протона. Природный уран представляет собой в основном смесь двух изотопов: U238 (в ядре которого 146 нейтронов) и U235 (143 нейтрона), причем последнего в природном уране лишь 0,7%. Химические свойства изотопов абсолютно идентичны, потому и разделить их химическими методами невозможно, но различие в массах (235 и 238 единиц) позволяет сделать это физическими методами: смесь уранов переводят в газ (гексафторид урана), а затем прокачивают через бесчисленные пористые перегородки. Хотя изотопы урана не отличимы ни по внешнему виду, ни химически, их разделяет пропасть в свойствах ядерных характеров.
Процесс деления U238 — платный: прилетающий извне нейтрон должен принести с собой энергию — 1 МэВ или более. А U235 бескорыстен: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре.
Цепная реакция При попадании нейтронов ядро урана-235 легко делится, образуя новые нейтроны. При определенных условиях начинается цепная реакция.
При попадании нейтрона в способное к делению ядро образуется неустойчивый компаунд, но очень быстро (через 10−23−10−22 с) такое ядро разваливается на два осколка, не равных по массе и «мгновенно» (в течение 10−16−10−14 с) испускающих по два-три новых нейтрона, так что со временем может размножаться и число делящихся ядер (такая реакция называется цепной). Возможно такое только в U235, потому что жадный U238 не желает делиться от своих собственных нейтронов, энергия которых на порядок меньше 1 МэВ. Кинетическая энергия частиц — продуктов деления на много порядков превышает энергию, выделяющуюся при любом акте химической реакции, в которой состав ядер не меняется.
Металлический плутоний существует в шести фазах, плотности которых от 14,7 до 19,8 кг/см3. При температуре ниже 119 градусов Цельсия существует моноклинная альфа-фаза (19,8 кг/см3), но такой плутоний очень хрупок, а в кубической гранецентрированной дельта-фазе (15,9) он пластичен и хорошо обрабатывается (именно эту фазу и стараются сохранить с помощью легирующих добавок). При детонационном обжатии никаких фазовых переходов быть не может — плутоний находится в состоянии квазижидкости. Фазовые переходы опасны при производстве: при больших размерах деталей даже при незначительном изменении плотности возможно достижение критического состояния. Конечно, произойдет это без взрыва — заготовка просто раскалится, но может произойти сброс никелирования (а плутоний очень токсичен).
Пример эффектов взрыва нейтронного заряда на различных расстояниях
Действие воздушного взрыва нейтронного заряда мощностью 1 кт на высоте ~ 150 м | |||||
Рассто-яние | Давление | Радиация | Защита бетон | Защита земля | Примечания |
---|---|---|---|---|---|
0 м | ~108 МПа | Окончание реакции, начало разлёта вещества бомбы. Благодаря конструктивным особенностям заряда значительная часть энергии взрыва выделяется в виде нейтронного излучения. | |||
от центра ~50 м | 0,7 МПа | n·105Гр | ~2-2,5 м | ~3-3,5 м | Граница светящейся сферы диаметром ~100 м , время свечения ок. 0,2 с. |
эпицентр 100 м | 0,2 МПа | ~35 000 Гр | 1,65 м | 2,3 м | Эпицентр взрыва. Человек в обычном убежище — гибель или крайне тяжёлая лучевая болезнь . Разрушение убежищ, рассчитанных на 100 кПа . |
170 м | 0,15 МПа | Сильные повреждения танков . | |||
300 м | 0,1 МПа | 5000 Гр | 1,32 м | 1,85 м | Человек в убежище — лучевая болезнь от лёгкой до тяжёлой степени . |
340 м | 0,07 МПа | Лесные пожары . | |||
430 м | 0,03 МПа | 1200 Гр | 1,12 м | 1,6 м | Человек — «смерть под лучом». Сильные повреждения сооружений . |
500 м | 1000 Гр | 1,09 м | 1,5 м | Человек гибнет от радиации сразу («под лучом») или через несколько минут. | |
550 м | 0,028 МПа | Средние повреждения сооружений . | |||
700 м | 150 Гр | 0,9 м | 1,15 м | Гибель человека от радиации через несколько часов. | |
760 м | ~0,02 МПа | 80 Гр | 0,8 м | 1 м | |
880 м | 0,014 МПа | Средние повреждения деревьев . | |||
910 м | 30 Гр | 0,65 м | 0,7 м | Человек гибнет через несколько суток; лечение — уменьшение страданий. | |
1000 м | 20 Гр | 0,6 м | 0,65 м | Стёкла приборов окрашиваются в тёмно-бурый цвет. | |
1200 м | ~0,01 МПа | 6,5-8,5 Гр | 0,5 м | 0,6 м | Крайне тяжёлая лучевая болезнь; гибнут до 90 % пострадавших . |
1500 м | 2 Гр | 0,3 м | 0,45 м | Средняя лучевая болезнь; гибнут до 80 % , при лечении до 50 % . | |
1650 м | 1 Гр | 0,2 м | 0,3 м | Лёгкая лучевая болезнь . Без лечения могут погибнуть до 50 % . | |
1800 м | ~0,005 МПа | 0,75 Гр | 0,1 м | Радиационные изменения в крови . | |
2000 м | 0,15 Гр | Доза может быть опасна для больного лейкемией . | |||
Рассто-яние | Давление | Радиация | Защита бетон | Защита земля | Примечания |
|
Как устроена атомная бомба?
Ядерный взрыв – это хаотичный процесс освобождения колоссального количества энергии, которая образуется в результате ядерной реакции деления или синтеза. Аналогичные и сопоставимые по мощности процессы происходят в недрах звезд.
Ядро атома любого вещества делится при поглощении нейтронов, но для большинства элементов периодической таблицы для этого необходимо затратить значительную энергию. Однако существуют элементы, способные к подобной реакции под воздействием нейтронов, которые обладают любой – даже минимальной – энергией. Они называются делящимися.
Главной особенностью ядерной реакции является ее цепной, то есть самоподдерживающийся характер. При облучении атома нейтронами он распадается на два осколка с выделением большого количества энергии, а также двух вторичных нейтронов, которые, в свою очередь, способны вызывать деление соседних ядер. Так процесс становится каскадным. В результате цепной ядерной реакции за короткий промежуток времени в очень ограниченном объеме образуется колоссальное количество «осколков» распавшихся ядер и атомов в виде высокотемпературной плазмы: нейтронов, электронов и квантов электромагнитного излучения. Этот сгусток стремительно расширяется, образуя ударную волну огромной разрушительной силы.
Устройство первой советской ядерной бомбы
Подавляющая часть современного ядерного оружия работает не на основе цепной реакции распада, а за счет слияния ядер легких элементов, которые начинаются при высоких температурах и огромном давлении. При этом происходит выделение еще большего количества энергии, чем во время распада ядер типа урана или плутония, но принципиально результат не изменяется – образуется область высокотемпературной плазмы. Подобные превращения носят название реакции термоядерного синтеза, а заряды, в которых они используются, — термоядерные.
Отдельно следует сказать о специальных видах ЯО, у которых большая часть энергии деления (или синтеза) направлена на один из факторов поражения. К ним относятся нейтронные боеприпасы, порождающие поток жесткого излучения, а также так называемая кобальтовая бомба, дающая максимальное радиационное заражение местности.
Объёмный взрыв, его развитие и боевое применение
Сам эффект объёмного взрыва известен очень давно — возможно, с тех времён, когда у кого-то на мельнице взорвалась мучная пыль. Принцип действия объёмно-детонирующих боеприпасов очень прост — снаряд распыляет газовое облако, которое затем подрывается с небольшой задержкой. В результате получается взрыв огромной мощности, ударная волна которого интенсивнее, чем у обычных фугасных зарядов.
Итак, термобарические боеприпасы — это фугасное оружие, использующее эффект объёмного взрыва, имеющее принципиальные отличия от традиционных объёмно-детонирующих бомб. Они снаряжаются смесью жидких нетроэфиров с металлическим порошком, играющим роль горючего, либо твёрдым взрывчатым веществом на основе гексогена или октогена, смешанным с загустителем и алюминиевым порошком.
Это ВВ размещается вокруг центрального разрывного заряда, дающего начальную ударную волну, которая инициирует уже детонацию термобарической смеси. А продукты взрыва за ударной волной смешиваются с воздухом и горят, Термобарические заряды, в отличие от объёмно-детонирующих, не зависят от влияния атмосферы, и не ограничены эффективной массой, то есть могут быть и небольшими.
А ударная волна термобарических зарядов также способна затекать в укрытия. Имеют боеприпасы и зажигательный эффект.
Впервые использовать объёмный взрыв для решения боевых задач пытались в Третьем Рейхе. Курьёзным проектом предполагалось сбивать бомбардировщики союзников, подрывая у них на пути облака угольной пыли. Ничего хорошего из этого не вышло.
Эпизодически применяли оружие объёмного взрыва силы США во Вьетнаме. Хотя обычно “вакуумной” называют бомбу BLU-82, сбрасываемую с транспорта C-130, это мнение ошибочно. А настоящая объёмно-детонирующая бомба CBU-55 успела только пройти испытания. В бою её применили всего один раз — после официального вывода войск США, перед самым поражением Южного Вьетнама.
Вряд ли на это могла как-то повлиять резолюция ООН “о зажигательном оружии” 1976 года, так какд альше обсуждения возможности запрета там дело не пошло.
Интенсивнее работы пошли в Советском Союзе. Помимо авиабомбы ОДАБ-500П, на вооружении появились огнемёт РПО “Шмель” и система залпового огня ТОС-1. Огнемет «Шмель» фактически является одноразовым гранатомётом с термобарической БЧ.
К началу 21го века список пополнился термобарическим выстрелом для гранатомёта РПГ-7, одноразовыми гранатомётами РШГ, термобарическими БЧ для управляемых (“Хризантема” 9М123Ф) и неуправляемых (С-8ДФ) ракет. Особый интерес представляет одноразовый гранатомёт РМГ, в котором применена тандемная боевая часть.
Основная секция представляет собой термобарический заряд, а перед ней располагается кумулятивный элемент. Таким образом, кумулятивный заряд пробивает в цели отверстие, а термобарический влетает в него и взрывается внутри цели. Созданы ручные термобарические гранаты (РГ-60) и выстрелы для подствольных гранатомётов (ВГ-40ТБ). Они предназначены для поражения целей в помещениях и внутри укрытий.
В США развитие термобарических боеприпасов шло медленнее. Но и там разработали термобарические гранатомётные выстрелы калибра 40мм, имеется объёмно-детонирующий выстрел в боекомплекте гранатомёта Мк 153, который использует Корпус Морской Пехоты. Созданы термобарические БЧ для управляемых ракет (“Hellfire”) Предполагалось снабдить термобарическим зажигательным боеприпасом 25мм гранатомёты, но закрытие программы поставило на идее крест.
Американские силы проверили “вакуумные” боеприпасы в деле в ходе вторжений в Ирак и Афганистан. Небезынтересно, что бомба, использованная в 1983 при атаке казарм миротворцев в Бейруте, была именно боеприпасом объёмного взрыва.
Критическая сборка
Продукты деления нестабильны и еще долго «приходят в себя», испуская различные излучения (в том числе нейтроны). Нейтроны, которые испускаются через значительное время (до десятков секунд) после деления, называют запаздывающими, и хотя доля их по сравнению с мгновенными мала (менее 1%), роль, которую они играют в работе ядерных установок, — важнейшая.
Забытое старое Взрывные линзы создавали сходящуюся волну. Надежность обеспечивалась парой детонаторов в каждом блоке.
Продукты деления при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая температуру. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а параметры сборки, в которой число делений в единицу времени постоянно, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов (при соответственно большей или меньшей мощности тепловыделения). Тепловую мощность увеличивают, либо подкачивая в критическую сборку дополнительные нейтроны извне, либо делая сборку сверхкритичной (тогда дополнительные нейтроны поставляют все более многочисленные поколения делящихся ядер). Например, если надо повысить тепловую мощность реактора, его выводят на такой режим, когда каждое поколение мгновенных нейтронов чуть менее многочисленно, чем предыдущее, но благодаря запаздывающим нейтронам реактор едва заметно переходит критическое состояние. Тогда он не идет в разгон, а набирает мощность медленно — так, что прирост ее можно в нужный момент остановить, введя поглотители нейтронов (стержни, содержащие кадмий или бор).
Плутониевая сборка (шаровой слой в центре) была окружена корпусом из урана-238, а затем слоем алюминия.
Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе к поверхности материала рожден нейтрон, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно. Поэтому формой сборки, сберегающей наибольшее количество нейтронов, является шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94% U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана представляет собой цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг. Поверхность уменьшается и при возрастании плотности. Поэтому-то взрывное сжатие, не меняя количества делящегося материала, может приводить сборку в критическое состояние. Именно этот процесс и лежит в основе распространенной конструкции ядерного заряда.
В первых ядерных зарядах в качестве источника нейтронов использовались полоний и бериллий (в центре).
Как работает нейтронная бомба — особенности поражающих факторов
Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть энергии выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.
Принцип действия нейтронных боеприпасов основан на свойстве быстрых нейтронов гораздо сильнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации обычной ядерной бомбы
Именно это свойство нейтронов и привлекло внимание военных
Нейтронная бомба имеет ядерный заряд небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.
Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые нюансы.
Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем дистанция поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции в 1350 метров от эпицентра оно опасно для жизни человека.
Кроме того, поток нейтронов вызывает в материалах — например, в броне — наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.
Не соответствует действительности распространенное мнение о том, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.
Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.
Использовать их в качестве средства для поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.
После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.
Вообще, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.
Сферы применения
Согласно известным заявлениям и легендам прошлых лет, нейтронная бомба является жестоким и циничным оружием: она убивает людей, но не разрушает имущество и материальные ценности, которые затем может присвоить жестокий и циничный противник. Тем не менее, в реальности все было иначе. Высокая эффективность и ценность нейтронного оружия для армий определялись иными факторами. Отказ от такого оружия, в свою очередь, тоже имел причины, далекие от чистого гуманизма.
Поток быстрых нейтронов в сравнении с поражающими факторами «обычного» ядерного взрыва показывает лучшую проникающую способность и может поражать живую силу противника, находящуюся под защитой построек, брони и т.д. Впрочем, нейтроны сравнительно быстро поглощаются и рассеиваются атмосферой, что ограничивает реальный радиус действия бомбы. Так, нейтронный заряд мощностью 1 кт при воздушном подрыве разрушает постройки и моментально убивает живую силу в радиусе до 400-500 м. На больших расстояниях влияние ударной волны и потока нейтронов сокращается, из-за чего уже на расстоянии 2-2,5 км влияние частиц на человека минимально и не представляет фатальной угрозы.
Таким образом, вопреки устоявшимся стереотипам, поток нейтронов оказывается не заменой прочим поражающим факторам, а дополнением к ним. При использовании нейтронного заряда ударная волна наносит окружающим объектам ощутимый ущерб, и ни о каком сохранении имущества речи не идет. Одновременно с этим специфика рассеивания и поглощения нейтронов ограничивает целесообразную мощность боеприпаса. Тем не менее, и такому оружию с характерными ограничениями нашли применение.
Прежде всего, нейтронный заряд может применяться в качестве дополнения к другому тактическому ядерному оружию (ТЯО) – в виде авиабомбы, боевой части для ракеты или артиллерийского снаряда. От «обычных» атомных боеприпасов такое оружие отличается принципами действия и иным соотношением эффекта от поражающих факторов. Тем не менее, в боевой обстановке и ядерная, и нейтронная бомба способны оказывать необходимое воздействие на противника. При этом последняя в некоторых ситуациях имеет серьезные преимущества.
Еще в 50-х и 60-х годах прошлого века бронетехника получила системы защиты от оружия массового поражения. Благодаря им танк или иная машина, попав под ядерный удар, могла выдержать основные поражающие факторы – если находилась на достаточном расстоянии от центра взрыва. Таким образом, традиционное ТЯО могло быть недостаточно эффективным против «танковой лавины» противника. Опыты показали, что мощный поток нейтронов способен пройти через бронирование танка и поразить его экипаж. Также частицы могли взаимодействовать с атомами материальной части, приводя к появлению наведенной радиоактивности.
Старт российской ракеты 53Т6 из состава комплекса ПРО А-135. Эта ракета, возможно, оснащается нейтронным боезарядом.
Нейтронные заряды также нашли применение в сфере противоракетной обороны. В свое время несовершенство систем управления и наведения не позволяло рассчитывать на получение высокой точности поражения баллистической цели. В связи с этим противоракеты предлагалось оснащать ядерными боевыми частями, способными обеспечить относительно большой радиус поражения. Однако одним из основных поражающих факторов атомного взрыва является взрывная волна, не образующаяся в безвоздушном пространстве.
Нейтронный боеприпас, согласно расчетам, мог показывать в разы большую дальность гарантированного поражения ядерного боевого блока – распространению высокоскоростных частиц не мешала атмосфера. Попадая на делящееся вещество в боеголовке-цели, нейтроны должны были вызывать преждевременную цепную реакцию без достижения критической массы, также известную как «эффект шипучки». Результатом такой реакции является маломощный взрыв с разрушением боезаряда. По мере развития противоракетных систем выяснилось, что поток нейтронов можно дополнить мягким рентгеновским излучением, повышающим общую эффективность боевой части.
Виды авиабомб
Наиболее часто используемыми авиационными бомбами являются фугасные. Даже небольшая бомба калибра 50 кг содержит больше взрывчатого вещества, чем 210-мм орудийный снаряд. Причина очень проста – бомбе не нужно выдерживать огромных нагрузок, которым подвергается снаряд в орудийном стволе, поэтому ее можно сделать тонкостенной. Корпус снаряда требует точной и сложной обработки, что абсолютно не обязательно для авиабомбы. Соответственно и стоимость последней гораздо ниже.
Следует отметить, что применять фугасные бомбы очень больших калибров (выше 1 тыс. кг) не всегда рационально. С увеличением массы взрывчатого вещества радиус поражения растет не слишком значительно. Поэтому по большой площади гораздо эффективнее применять несколько боеприпасов средней мощности.
Еще одним распространенным типом авиационных бомб являются осколочные. Основной целью поражения подобных бомб является живая сила противника или гражданское население. Эти боеприпасы имеют конструкцию, которая способствует образования большого количества осколков после взрыва. Обычно они имеют насечку на внутренней стороне корпуса или готовые поражающие элементы (чаще всего шарики или иголки), помещенные внутрь корпуса. При взрыве стокилограммовой осколочной бомбы получается 5-6 тыс. небольших осколков.
Как правило, осколочные бомбы имеют меньший калибр, чем фугасные. Значительным недостатком этого вида боеприпаса является тот факт, что от осколочной бомбы легко спрятаться. Для этого подойдет любое полевое укрепление (окоп, ячейка) или здание. В настоящее время более распространены кассетные осколочные боеприпасы, которые представляют собой контейнер, заполненный небольшими осколочными суббоеприпасами.
Подобные бомбы приводят к значительным жертвам, причем больше всего от их действия страдает мирное население. Поэтому подобное оружие запрещено многими конвенциями.
Бетонобойные бомбы. Это весьма интересный тип боеприпаса, его предшественником считаются так называемые сейсмические бомбы, разработанные англичанами в начале Второй мировой войны. Идея была такова: сделать очень большую бомбу (5,4 тонны – Tallboy и 10 тонн – Grand Slam), поднять ее повыше — километров на восемь — и сбросить на голову супостату. Бомба, разогнавшись до огромной скорости, проникает глубоко под землю и там взрывается. В результате происходит небольшое землетрясение, которое уничтожает постройки на значительной площади.
Сегодня бетонобойные бомбы часто оснащают ракетным ускорителем, чтобы боеприпас набрал большую скорость и проник поглубже в землю.
Вакуумные бомбы. Эти авиационные боеприпасы стали одним из немногих послевоенных изобретений, хотя боеприпасами объемного взрыва интересовались еще немцы в конце Второй мировой войны. Массово использовать их начали американцы во время вьетнамской кампании.
Принцип работы авиационных боеприпасов объемного взрыва — это более правильное название — довольно прост. В боевой части бомбы содержится вещество, которое при детонации подрывается специальным зарядом и превращается в аэрозоль, после чего второй заряд поджигает его. Подобный взрыв в несколько раз мощнее обычного и вот почему: обычный тротил (или другое ВВ) содержит и взрывчатое вещество, и окислитель, «вакуумная» бомба использует для окисления (горения) кислород воздуха.
Правда, взрыв подобного типа относится к типу «горение», но по своему действию она во многом превосходит обычные боеприпасы.
https://youtube.com/watch?v=6oZ5SEWY4r8
Автор статьи:
Егоров Дмитрий
Увлекаюсь военной историей, боевой техникой, оружием и другими вопросами, связанными с армией. Люблю печатное слово во всех его формах.