Ионный двигатель

Тип III, экспонат 1: EmDrive или ведро киловатт

Устройство под названием EmDrive дошло даже до испытаний, проводившихся китайскими и американскими исследователями. Автор, британский инженер Роджер Шойер, утверждает, что в замкнутой полости с медными стенками можно создать стоячую электромагнитную волну, которая как-то («за счет взаимодействия с виртуальной квантовой плазмой») создаст тягу без излучения вовне. По мнению тех физиков, которые разбирали теоретические построения Шойера, изобретатель просто противоречит сам себе, а серия опытов показала тягу в пределах погрешности опыта.

Ученые, работавшие с EmDrive, лишний раз попрактиковались в постановке сложных и тонких опытов, но летательный аппарат это определенно двигать не может. Если бы микроволны в замкнутой полости и вправду могли давать такую тягу, которая способна поднять корабль на орбиту (а Шойер в итоге делал и такие заявления), то этот эффект наверняка бы заметили раньше. В конце концов, с микроволнами работают СВЧ-печи, радары, сотовые телефоны, Wi-Fi, и экспериментов в этой области поставлено предостаточно.

Миссии

Действующие миссии

  • Starlink — проект компании Илона Маска SpaceX по выведению спутников на околоземную орбиту для создания глобальной сети интернет. Технология используется для маневрирования спутников и избежания их столкновения с космическим мусором[источник не указан 414 дней].
  • Artemis
  • Хаябуса-2
  • BepiColombo. Запущен 20 октября 2018 года. ЕКА использует ионный двигатель в этой меркурианской миссии, наряду с гравитационными манёврами и химическим двигателем для перехода на орбиту вокруг Меркурия в качестве искусственного спутника. На аппарате работают самые мощные на сегодняшний день 4 ионных двигателя суммарной тягой 290 мН.

Завершённые миссии

  • SERT (англ. Space Electric Rocket Test, рус. Тест Космического Электрического Двигателя — программа NASA, в которой на спутниках впервые был использован ионный двигатель)
  • Deep Space 1
  • Hayabusa (вернулся на Землю 13 июня 2010 года)
  • Smart 1 (завершил миссию 3 сентября 2006 года, после чего был сведён с орбиты)
  • GOCE (после исчерпания запасов рабочего тела сошёл с орбиты)
  • LISA Pathfinder (ЕКА) использовал ионные двигатели в качестве вспомогательных для точного контроля высоты; деактивирован 30 июня 2017.
  • Dawn. 1 ноября 2018 года аппарат исчерпал все запасы топлива для маневрирования и ориентации, его миссия, длившаяся 11 лет, была официально завершена.

Планируемые миссии

  • Международная космическая станция. По состоянию на март 2011 года планировалась доставка на МКС электромагнитного двигателя (VASIMR) Ad Astra VF-200 с мощностью в 200 кВт VASIMR. VF-200 представляет собой версию VX-200. Поскольку доступная электрическая мощность на МКС меньше 200 кВт, проект ISS VASIMR включал в себя систему батарей, которая накапливала энергию для 15 минут работы двигателя.
  • Solar Orbiter.

Нереализованные миссии


Компьютерная модель Прометея-1

NASA ввело проект «Прометей», для которого разрабатывался мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагалось, что такие двигатели в количестве восьми штук могли бы разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В 2005 году программа была закрыта. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Проект Джефри Лэндиса

Geoffrey A. Landisruen предложил проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что даёт некоторое преимущество по сравнению с чисто космическим парусом. В настоящее время данный проект неосуществим из-за технических ограничений — например, он потребует силы тяги от ионных двигателей в 1570 Н при нынешних 20—250 мН(по другим данным рекорд тяги у современных ионных двигателей 5,4 Н).

Запарились

История создания SABRE — это прежде всего история разработки и совершенствования теплообменника, поскольку все завязано на его характеристики. Он должен извлечь из воздуха до 400 МВт тепла, при этом иметь минимальный вес, малые габариты, малое гидравлическое сопротивление (чтобы обеспечить заданный расход хладагента без установки тяжелых насосов), работать в условиях громадного перепада температур и давлений, сохранив целостность на протяжении всего жизненного цикла аппарата, и быть технологичным в изготовлении. По словам Алана Бонда, современные промышленные теплообменники такой мощности имеют вес в 30 раз больше, чем допустимо для применения на борту одноступенчатого космического аппарата (18 т против 600 кг, заложенных в конструкцию SABRE). Ответ, как часто бывает, подсказала природа. Жабры рыб имеют разветвленную систему капилляров, в которых более тонкая сеть трубочек вливается в толстые сосуды. Это оказалось именно тем решением, которое позволяет снизить сопротивление току жидкости при достаточной площади теплообмена. Существующие теплообменники, как правило, имеют набор трубок равного диаметра, в новой же конструкции применяются изогнутые тонкостенные трубки диаметром 0,9 мм с толщиной стенок 30 нм из сплава Inсonel 718, которые соединяют основные трубопроводы большего диаметра. Для изготовления применяется пайка, а отверстия в основных трубопроводах прожигаются лазером. Был изготовлен опытный образец теплообменника, который поместили перед установленным на стенде реактивным двигателем Rolls-Royce Viper. Инженеры провели цикл наземных испытаний, в которых модуль прошел 200 рабочих циклов по 5 минут каждый — больше, чем за планируемый жизненный цикл аппарата Skylon.


Схема SKYLON 1. Керамический обтекатель;
2. Носовые стабилизаторы;
3. Бак с жидким кислородом;
4. Бак с жидким водородом;
5. Грузовой отсек;
6. Блок управления;
7. Воздухозаборник;
8. Теплообменник;
9. Двигатель SABRE;
10. Орбитальные маневровые двигатели.

При охлаждении воздуха до -140 °С неизбежно возникает проблема обледенения: весь пар (а при этой температуре уже не только пар, но и углекислый газ), который содержался в окружающем воздухе, превращается в лед. При первом пробном запуске теплообменник за считаные секунды покрылся сплошной коркой льда, который полностью забил все каналы для воздуха. По заявлению Reaction Engines, в настоящее время проблема решена, однако компания избегает даже малейших намеков на то, каким образом это удалось, ссылаясь на коммерческую тайну. Некоторое представление можно получить, посмотрев, как с обледенением справлялись в проекте RB545. Охлаждение потока там проводилось в две стадии: первый теплообменник охлаждал воздух до +10 °С, превращая почти весь пар в туман, а затем впрыск жидкого кислорода моментально снижал температуру потока до -50 °С. Вся оставшаяся влага (перед этим опционально стоял еще влагоуловитель) моментально превращалась в мелкодисперсные кристаллы льда, не намерзая на трубки теплообменника.

Поскольку двигатель обладает высокой термодинамической эффективностью, разработчики использовали простой и легкий осесимметричный воздухозаборник с двухскачковой системой торможения воздушного потока с повышением его давления до 1,3 бара. Альтернативой был вариант с плоским клином сжатия, представленный на эскизах HOTOL. Он обладает большей эффективностью (большее число косых скачков уплотнения минимизирует потери полного давления на входе), однако при изменении числа Маха необходимо регулировать углы наклона множества поверхностей, чтобы все скачки сошлись в одну точку. Эта механизация с шарнирами и приводами тянет за собой дополнительный вес. В осесимметричном двухскачковом воздухозаборнике задача решается только перемещением конуса взад-вперед.

Схема работы плазменного двигателя

Основные типы плазменных двигателей для космических кораблей Принципы действия
Электростатический «Классический» ионный двигатель, действующий на основе «эффекта Холла», при котором замкнутый дрейф электронов под действием кольцевого электростатического поля обеспечивает реактивное истекание плазмы.

По принципиальной схеме холловские двигатели делятся на двигатели с анодным слоем (ДАС) и с протяжённой зоной ускорения (СПД)

Электротермический Для генерации плазмы используются электромагнитные поля, что приводит к повышению температуры топлива. Далее тепловая энергия, передаваемая газообразному топливу, преобразуется в кинетическую
Электромагнитный Плазменный двигатель, в котором ионы ускоряются за счёт воздействия электромагнитных полей — естественного (земного) и искусственного (генерируемого самим аппаратом)

Самыми используемыми в настоящее время пока что являются устройства, так или иначе действующие на эффекте Холла.

Схема ионного двигателя

На сегодняшний день ионные двигатели необходимы спутникам, чтобы маневрировать в ближнем космосе — как правило, для удержания параметров стационарной орбиты, изменения своего курса или уклонения от космического мусора. Но существует и несколько проектов, связанных с использование ионных двигателей для дальних космических путешествий.

Самым известным из них стала автоматическая исследовательская миссия Dawn от НАСА. В сентябре 2007 года она была запущена для исследования астероида Веста и карликовой планеты Церера. Аппарат Dawn был оборудован тремя компактными ксеноновыми ионными двигателями NSTAR, которые разгоняли атомы до скорости в десять раз выше, чем могли это сделать современные химические двигатели.

Для полета Dawn требовалось в среднем 3,25 мг топлива в секунду, а на борту аппарата разместилось 425 кг ксенона. Через девять лет после запуска станция Dawn разогналась до скорости 39 900 км/час (11,1 км/с). 1 ноября 2018 года НАСА официально закончила миссию Dawn, поскольку ионные двигатели полностью выработали топливо.

Ещё одним космическим аппаратом, который использует ксеноновые ионные двигатели для дальних полётов, стала японская исследовательская станция по изучению астероида Рюгу «Хаябуса-2». Зонд оснащён четырьмя ионными двигателями IES и ксеноном массой 73 кг.

https://youtube.com/watch?v=g0qP8CxxYGU

Принцип действия

Испытания ионного двигателя на ксеноне

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с, по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.
Технические характеристики ионного двигателя: потребляемая мощность 1—7 кВт, скорость истечения ионов 20—50 км/с, тяга 20—250 мН, КПД 60—80 %, время непрерывной работы более трёх лет.
В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи.

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть.
В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50—100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя, есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей.

Работающая модель ионного двигателя, действующая на основе отбрасывания заряженных ионов воздуха с проводящего острия под высоким напряжением, может быть создана в домашних условиях

Очень быстрый гибрид

Двигатель компании Reaction Engines — SABRE — вполне подходит на роль ключевой технологии, с помощью которой можно разрубить гордиев узел противоречий и реализовать одноступенчатый воздушно-космический аппарат. Этот гибрид сочетает в себе качества турбореактивного (хотя турбину компрессора крутят не выхлопные газы, а горячий гелий в замкнутом цикле), прямоточного и ракетного двигателей и работает с достаточной эффективностью на всех участках траектории, от взлетной полосы до орбиты. Расчеты Reaction Engines показывают, что в случае применения ЖРД общий вес корабля и полезной нагрузки должен составлять 13% от стартового веса для вывода полезной нагрузки 15 т на низкую опорную орбиту. Двигатель SABRE позволяет при тех же условиях довести вес корабля с полезной нагрузкой до 22% — цифра вполне достижимая при современном уровне технологий.


Революционный двигатель SABRE разрабатывается Reaction Engines при поддержке BAE Systems. Ожидается, что он сможет поднять самолет в воздух и разогнать его до 5 М, после чего перейдет в реактивный режим работы — для скоростей до 25 М.

SABRE, как и его предшественник RB545, — гибридный воздушно-реактивный двигатель с предохлаждением потока. Здесь, как и в LACE, за воздухозаборником стоит криогенный теплообменник, однако входящий поток не сжижается, всего лишь охлаждаясь до низких температур. Далее воздух с температурой порядка -140 °С (до этого он нагрелся при торможении свыше 1000 °С) поступает в простой турбокомпрессор из легких сплавов (низкая температура воздушного потока позволила облегчить его на три четверти по сравнению с компрессором турбореактивного двигателя), сжимающий газы до давления камеры сгорания, в которой газообразный воздух смешивается с жидким водородом. При выходе из плотных слоев атмосферы воздухозаборник запирается створками, а камера сгорания питается жидким кислородом из внутренних баков. Поскольку расход водорода на охлаждение больше, чем окислителя в полученном воздухе, избыток (2/3 потока, прошедшего теплообменник) дожигается во втором контуре, смешиваясь с той частью воздуха, которая не поступила в теплообменник.

Однако принципиальная схема по сравнению с RB545 несколько изменилась: добавилась промежуточная петля с жидким гелием — теперь водород охлаждает гелий, а гелий уже отбирает тепло у воздуха и, нагревшись, крутит турбину компрессора и насосов, после чего поступает на повторное охлаждение. Это позволило избежать проблем водородной хрупкости в температурно-напряженном теплообменнике воздухозаборника. Компоновка космического аппарата тоже изменилась: тонкое веретено корпуса оснащено треугольным крылом со слегка искривленными мотогондолами на его концах.

SABRE: история и предыстория
1903

Первый полет самолета братьев Райт, оснащенного двигателем

1935

Появление одного из самых массовых транспортных самолетов в истории, Douglas DC-3

1952

Начало коммерческой эксплуатации реактивного пассажирского авиалайнера de Havilland Comet

1962

Запуск первого в мире коммерческого спутника Telstar 1

1969

Турбореактивные двухконтурные двигатели делают Boeing 747 первым дальнемагистральным широкофюзеляжным пассажирским самолетом

1981

Начало полетов кораблей Space Shuttle

1990

Начало разработки SABRE

2003

Успешное решение проблемы обледенения воздухозаборника

2012

Успешные испытания теплообменника для системы предварительного охлаждения

2013

Британское правительство направляет на поддержку проекта 50 млн фунтов стерлингов

2015

BAE Systems инвестирует в Reaction Engines 20 млн фунтов для создания и испытаний прототипа

История атома

Если положить руку на сердце, то со времен Королева ракеты-носители, используемые для полетов в космос, кардинальных изменений не претерпели. Общий принцип работы — химический, основанный на сгорании топлива с окислителем, остается прежним. Меняются двигатели, система управления, виды топлива. Основа путешествий в космосе остается неизменной — реактивная тяга толкает ракету или космический аппарат вперед.

Очень часто можно услышать, что нужен серьезный прорыв, разработка, способная заменить реактивный двигатель, чтобы повысить эффективность и сделать полеты к Луне и Марсу более реалистичными. Дело в том, что в настоящее время едва ли не большая часть массы межпланетных космических аппаратов, — это топливо и окислитель. А что если отказаться от химического двигателя вообще и начать использовать энергию ядерного двигателя?

Идея создания ядерной двигательной установки не нова. В СССР развернутое постановление правительства по проблеме создания ЯРД было подписано еще в далеком 1958 году. Уже тогда были проведены исследования, показавшие, что, используя ядерный ракетный двигатель достаточной мощности, можно добраться до Плутона (еще не утратившего свой планетный статус) и обратно за шесть месяцев (два туда и четыре обратно), потратив на путешествие 75 т топлива.

Занимались в СССР разработкой ядерного ракетного двигателя, однако приближаться к реальному прототипу ученые стали только сейчас. Дело не в деньгах, тема оказалась настолько сложной, что ни одна из стран не смогла до сих пор создать работающий прототип, а в большинстве случаев всё заканчивалось планами и чертежами. В США проводились испытания двигательной установки для полета на Марс в январе 1965 года. Но дальше тестов KIWI проект NERVA по покорению Марса на ядерном двигателе не сдвинулся, да и был он значительно проще, чем нынешняя российская разработка. Китай поставил в свои планы космического развития создание ядерного двигателя поближе к 2045 году, что тоже очень и очень не скоро.

В России же новый виток работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем начался в 2010 году. Проект создается силами «Роскосмоса» и «Росатома» совместно, и его можно назвать одним из самых серьезных и амбициозных космических проектов последнего времени. Головным исполнителем по ЯЭДУ является Исследовательский центр им. М.В. Келдыша.

[править] Принцип действия

Испытания ионного двигателя на ксеноне

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 на внешней). В результате попадания ионов между сетками они разгоняются и выбрасываются в пространство, ускоряя корабль согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

  • чтобы корпус корабля оставался нейтрально заряженным;
  • чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.

Чтобы ионный двигатель работал — нужны всего 2 вещи: газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и как следствие конечной скорости космического аппарата.

Как работает ионный двигатель

Принцип работы ионного двигателя простой и сложный одновременно. Он заключается в ионизации газа, который разгоняется электростатическим полем для получения реактивной тяги и разгона космического корабля согласно третьему закону Ньютона.

Топливом или рабочим телом такого двигателя является ионизированный инертный газ (гелий, аргон, неон, ксенон, криптон, оганесон, радон). Впрочем, не все инертные газы стоит использовать в качестве топлива, поэтому, как правило, выбор ученых и исследователей падает на ксенон. Также рассматривается вариант использования ртути в качестве рабочего тела ионного двигателя

Во время работы двигателя в камере образуется смесь из отрицательных электронов и положительных ионов. Так как электроны являются побочным продуктом, их надо отфильтровать. Для этого в камеру вводится трубка с катодными сетками для того, чтобы она притягивала к себе электроны.

Положительные ионы, наоборот, притягиваются к системе извлечения. После чего разгоняются между сетками, разница электростатических потенциалов которых составляет примерно 1 200 Вольт, и выбрасываются в качестве реактивной струи в пространство.

Схематичное изображение работы ионного двигателя.

Электроны, которые попали в катодную ловушку, должны быть удалены с борта корабля, чтобы он сохранял нейтральный заряд, а выброшенные ионы не притягивались обратно, снижая эффективность установки. Выброс электронов осуществляется через отдельное сопло под небольшим углом к струе ионов

Таким образом, что произойдет в их взаимодействии после покидания двигателя, уже не так важно, ведь они не мешают движению корабля

Клин клином

Сопло двигателя тоже высокотехнологичный агрегат, имеющий отличия от классического колокола сопла Лаваля, применяющегося на современных жидкостных реактивных двигателях. Существенной проблемой одноступенчатых аппаратов является изменение давления на срезе сопла: оптимизированное под вакуум сопло не даст той тяги в атмосфере, и наоборот. В результате весь участок разгона сопло будет работать то с недорасширением, то с перерасширением, что приведет к падению удельного импульса. В многоступенчатых аппаратах можно оптимизировать сопло каждой ступени под давление на участке ее работы (оно тоже варьируется, но не в таком широком диапазоне). В одноступенчатых нужно или применять сопло изменяемой геометрии (а это дополнительный вес механизмов и приводов), или мириться с потерей эффективности. Решить эту проблему позволяют двигатели с высотной компенсацией, в которых расширяющийся сверхзвуковой поток газа только с одной стороны ограничен стенкой сопла, с другой же — внешняя среда. К таковым относится клиновоздушный ракетный двигатель (aerospike engine, применялся в американском проекте Х-33) и expansion-deflection nozzle — именно такой тип сопла разрабатывается в рамках научно-исследовательских программ STERN и STRICT для SABRE. Этот тип сопла имеет такой же колокол, как и у сопла Лаваля (правда, короче и другой геометрии), с центральным телом по оси, отклоняющим поток к стенкам колокола (по форме похоже на впускной клапан в цилиндре ДВС). За центральным телом остается не занятая выхлопными газами зона, позволяющая компенсировать влияние давления окружающей среды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector