Пороховой двигатель самолета
Содержание:
Примеры из жизни
Насколько вы сильны?
Рассмотрим простейший пример. Ваш ребёнок сел на санки и просит вас его покатать. С какой силой вам нужно тянуть эти санки, чтобы ребёнок остался доволен быстрой ездой ? Пока санки с ребёнком остаются в состоянии покоя, все силы, действующие на них, уравновешены. Состояние покоя — это частный случай инерции. Здесь на санки действуют две силы: тяжести Fт = m•g, направленная вертикально вниз, и нормального давления N, направленная вертикально вверх. Поскольку санки не движутся, то N – m•g = 0. Тогда из этого равенства следует, что N = m•g.
Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.
Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m•a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax • N, где fmax – максимальный коэффициент трения покоя.
Если в эту формулу подставить выражение для N, то мы получим Fтр.max = fmax•m•g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax•m•g = fск•m•g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 • 30 кг • 9,81 м/с² = 206,01 Н (Ньютона).
Насколько силён ваш автомобиль?
Рассмотрим ещё пример. У вас есть автомобиль, мощность двигателя которого N. вы едете со скоростью v. Как в этом случае узнать силу тяги двигателя вашего автомобиля ? Поскольку скорость автомобиля не меняется, то Fтяги уравновешена силами трения качения, лобового сопротивления, трения в подшипниках и т. д. (первый закон Ньютона). По второму закону Ньютона она будет равна Fтяги = m•a. Чтобы её вычислить, достаточно знать массу автомобиля m и ускорение a.
Допустим, вы разогнали свой автомобиль до скорости v за какое-то время t, проехав расстояние s. Тогда Fтяги будет легко рассчитана по формуле: Fтяги = m•v/t. Как и в примере с санками, справедлива также такая формула: Fтяги = f•m•g, где f – коэффициент трения качения, который зависит от скорости автомобиля (чем больше скорость, тем меньше этот коэффициент).
Но что делать, если масса автомобиля m, коэффициент трения качения f и время разгона t неизвестны ? Тогда можно поступить по-другому. Двигатель вашего автомобиля при разгоне совершил работу A = Fтяги • s. Поскольку формула расстояния имеет вид s = v•t, то выражение для работы будет таким: A = Fтяги • v • t. Разделив обе части этого равенства на t, получим A/t = Fтяги • v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги • v. Отсюда уже получим искомую формулу: Fтяги =N/v.
Допустим, вы разогнали свой автомобиль до скорости v = 180 км/ч, а мощность его двигателя N = 200 л. с. (лошадиных сил). Чтобы вычислить Fтяги двигателя, необходимо прежде перевести указанные единицы измерения в единицы СИ, т. е. международной системы измерения. Здесь 1 л. с. = 735,499 Вт, поэтому мощность двигателя составит N = 200 л. с. • 735,499 Вт/л. с. = 147099,8 Вт. Скорость в системе СИ будет равна v = 180 км/ч = 180 • 1000 м/3600 с = 50 м/с. Тогда искомое значение будет равно Fтяги = 147099,8 Вт/50 (м/с) = 2941,996 Н ~ 2,94 кН (килоньютона).
Около 3 килоньютонов. Много это или мало ? Допустим, вы жмёте 100 килограммовую штангу. Чтобы её поднять, вам нужно преодолеть её вес, равный P = m•g = 100 кг • 9,81 м/с² = 981 Н (ньютон)~0,98 кН. Полученное для автомобиля значение Fтяги больше веса штанги в 2,94/0,98 = 3 раза. Это равносильно тому, что вы будете поднимать штангу массой в 300 кг. Такова сила тяги двигателя вашего автомобиля (на скорости 180 км/ч).
Таким образом, зная школьный курс физики, мы можем с лёгкостью вычислить силу тяги:
- человека,
- лошади,
- паровоза,
- автомобиля,
- космической ракеты и всех прочих видов техники.
Видео
В нашем видео вы найдете интересные опыты, поясняющие, что такое сила тяги и сила сопростивления.
https://youtube.com/watch?v=fG0ENLTPdbM
Гибридный ракетный двигатель будет «печатать» топливо
В ракетостроении давно обсуждается возможность объединения ракетных двигателей на твердом и жидком реактивном топливе. Гибридный двигатель будет обладать устойчивостью двигателей на твердом топливе и управляемостью жидкостных двигателей. До сих пор создание таких двигателей вызывает ряд технических проблем, связанных с поиском оптимального соотношения твердого и жидкого топлива. Американские ученые предлагают создать гибридный двигатель, устроенный по принципу 3D-принтера.
Первые гибридные ракетные двигатели уже существуют, один из них установлен в космическом аппарате SpaceShipOne. Однако они до сих пор не нашли широкого применения, потому что ученым пока не удается достичь смешивания твердого и жидкого топлива в оптимальных пропорциях.
Исследователи Космической корпорации США во главе с Джеромом К. Фуллером недавно запатентовали новый принцип организации гибридного двигателя. Метод, предложенный учеными, заключается в создании системы каналов, по которым жидкий окислитель проникает в блок твердого ракетного топлива посредством стереоскопической (3D) печати. Другими словами, система буквально «печатает» трубочки ракетного топлива толщиной в один миллиметр.
В более ранних исследованиях сотрудники корпорации Thiokol предлагали использовать гранулы твердого топлива сложных форм. Стереолитография, или трехмерная печать, может рассматриваться как создание таких конструкций непосредственно в ходе работы двигателя. Этот подход позволит управлять процессом наполнения твердого ракетного топлива жидким окислителем и, соответственно, задавать параметры сгорания топлива.
Космические корабли, оборудованные твердотопливными двигателями, имеют низкий удельный импульс, при их использовании возникают сложности с управлением тягой двигателя, его остановкой и повторным запуском. Активность сгорания жидкого топлива можно контролировать во время полета, но запуск ракеты на жидком топливе более трудоемкий, а их транспортировка более опасна. Гибридный двигатель совмещает преимущества двух видов двигателей. Ученые полагают, что новые гибридные двигатели позволят создавать более надежные и управляемые космические корабли. Можно предположить, что эта технология станет ключевой в развитии космического туризма. Об этом сообщает Информнаука со ссылкой на Technology Review.
http://nauka.izvestia.ru/news/article104331.html
Энергоэффективность
Для ракет и ракетоподобных двигателей, таких как ионные модели, sp подразумевает более низкую энергоэффективность.
В этой формуле v e — фактическая скорость струи.
Следовательно, необходимая сила пропорциональна каждой скорости выхлопа. При более высоких стремительностях требуется мощность намного сильней для той же тяги, что приводит к меньшей энергоэффективности на одну единицу.
Тем не менее общая энергия для миссии зависит от всего использования топлива, а также оттого, сколько энергии требуется на одну единицу. Для низкой скорости выхлопа относительно миссии delta-v необходимы огромные количества реакционной массы. Фактически по этой причине очень низкая скорость выхлопа не является энергоэффективной. Но оказывается, что ни один тип не имеет максимально высокие показатели.
На удобрениях
Двигатель Дмитрия был проще и технологичнее. Основной компонент его ракетного топлива — это натриевая селитра, которая продавалась в хозяйственных магазинах как удобрение в мешках по 3 и 5 кг. Селитра служила окислителем. А в качестве горючего выступала обычная газета, которая и пропитывалась перенасыщенным (горячим) раствором селитры, а затем высушивалась. Правда, селитра в процессе сушки начинала кристаллизоваться на поверхности бумаги, что приводило к замедлению горения (и даже гашению). Но тут вступало в действие ноу-хау — Дмитрий проглаживал газету горячим утюгом, буквально вплавляя селитру в бумагу. Это стоило ему испорченного утюга, но зато такая бумага горела очень быстро и стабильно, выделяя большое количество горячих газов. Набитые свернутой в тугой рулон селитрованной бумагой картонные трубки с импровизированными соплами из бутылочных пробок взлетали на сотню-другую метров.
Удельный импульс в секундах
Наиболее распространенной единицей для конкретного толчка является H*с. Как в контексте СИ, так и в тех случаях, когда используются имперские или обычные величины. Преимущество секунд заключается в том, что единица измерения и числовое значение одинаковы для всех систем и, по существу, универсальны. Почти все производители указывают свои характеристики двигателя в секундах. И такое устройство также полезно для определения специфик устройства самолета.
Использование метров в секунду для нахождения эффективной скорости выхлопа также достаточно распространено. Этот блок интуитивно понятен при описании ракетных двигателей, хотя эффективная скорость выхлопа устройств может значительно отличаться от фактической. Это, скорее всего, может быть связано с топливом и окислителем, которые сбрасываются за борт после включения турбонасосов. Для реактивных двигателей с воздушным дыханием эффективная скорость выхлопа не имеет физического смысла. Хотя она может использоваться для целей сравнения.
Алюминий
«Крылатый металл», любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен.
Технологии
Как кошки ведут себя в невесомости (и зачем это проверять)
Чтобы он стал хорошим конструкционным материалом, из него приходится делать сплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мы его чаще всего зовем) — такое имя дала сплаву немецкая фирма, впервые его предложившая в 1909 году (от названия города Дюрен). Этот сплав, кроме алюминия, содержит небольшие количества меди и марганца, резко повышающие его прочность и жесткость. Но есть у дюраля и недостатки: его нельзя сваривать и сложно штамповать (нужна термообработка). Полную прочность он набирает со временем, этот процесс назвали «старением», а после термообработки состаривать сплав нужно заново. Поэтому детали из него соединяют клепкой и болтами.
В ракете он годится только на «сухие» отсеки — клепаная конструкция не гарантирует герметичности под давлением. Сплавы, содержащие магний (обычно не больше 6%), можно деформировать и сваривать. Именно их больше всего на ракете Р-7 (в частности, из них изготовлены все баки).
Американские инженеры имели в своем распоряжении более прочные алюминиевые сплавы, содержащие до десятка разных компонентов. Но прежде всего наши сплавы проигрывали заокеанским по разбросу свойств. Понятно, что разные образцы могут немного отличаться по составу, а это приводит к разнице в механических свойствах. В конструкции часто приходится полагаться не на среднюю прочность, а на минимальную, или гарантированную, которая у наших сплавов могла быть заметно ниже средней.
В последней четверти XX века прогресс в металлургии привел к появлению алюминий-литиевых сплавов. Если до этого добавки в алюминий были направлены только на увеличение прочности, то литий позволял сделать сплав заметно более легким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты «Энергия», из него же делают сейчас и баки «Шаттлов».
Наконец, самый экзотический материал на основе алюминия — боралюминиевый композит, где алюминию отведена та же роль, что и эпоксидной смоле в стеклопластике: он удерживает вместе высокопрочные волокна бора. Этот материал только-только начал внедряться в отечественную космонавтику — из него сделана ферма между баками последней модификации разгонного блока «ДМ-SL», задействованного в проекте «Морской старт». Выбор конструктора за прошедшие 50 лет стал намного богаче. Тем не менее как тогда, так и сейчас алюминий — металл №1 в ракете. Но, конечно же, есть и целый ряд других металлов, без которых ракета не сможет полететь.
Титан и титановые сплавы Самый модный металл космического века. Вопреки широко распространенному мнению, титан не очень широко применяется в ракетной технике — из титановых сплавов в основном делают газовые баллоны высокого давления (особенно для гелия). Титановые сплавы становятся прочнее, если поместить их в баки с жидким кислородом или жидким водородом, в результате это позволяет снизить их массу. На космическом корабле ТКС, который, правда, так ни разу и не полетел с космонавтами, привод стыковочных механизмов был пневматическим, воздух для него хранился в нескольких 36-литровых шар-баллонах из титана с рабочим давлением 330 атмосфер. Каждый такой баллон весил 19 килограммов. Это почти впятеро легче, чем стандартный сварочный баллон такой же вместимости, но рассчитанный на вдвое меньшее давление!
4 ответы
VectorVictor дает правильный ответ для струй.
Однако для пропеллерных самолетов это действительно сложно, и в
итоге можно измерить только разницу между тягой и тягой. Измеряя
тормозную мощность статического двигателя и сопротивление самолета
в ветровом потоке, можно получить некоторые точки данных, которые
помогут рассчитать, какова реальная тяга в полете.
Вы правы, в конце невозможно точно измерить тягу. Самая важная
часть измерения — это точное определение того, что такое тяга: как
вы объясняете увеличение сопротивления трения в пропеллере?
Является ли охлаждающее сопротивление частью сопротивления планера,
или же оно уменьшает тягу? Измерение тяги — это прежде всего
упражнение в точном, тщательном бухгалтерии.
6
Толщина двигателя измеряется в полете с помощью EPR —
Коэффициент давления двигателя.
EPR — отношение давления выхлопных газов турбины, деленное на
давление, измеренное на вентиляторе или впускном отверстии.
Действительно, это мера, используемая для ряда двигателей для
настройки тяги.
В ходе разработки проводятся более подробные испытания в воздухе
двигателей, большинство изготовителей имеют бортовые испытательные
стенды. Параметры, записанные здесь, возможно, измеряются сотнями
или даже тысячами …
5
Эти данные силы исключают эффекты аэродинамической интеграции,
такие как:
- эффекты пропеллерного потока для носовых ракет и блокировка
фюзеляжа для летательных аппаратов с тыльной стороны. - перегрузка охлаждения двигателя (что является аэродинамическим
свойством конкретной интеграции двигателя/двигателя) - ускоренный воздух над планетарным двигателем (реактивные
двигатели внутреннего сгорания или пропеллер)
Это не является абсолютным требованием для оценки
производительности двигателя. В частности, если самолет может
летать с другим двигателем или если характеристики сопротивления
самолета известны каким-либо действующим методом, вместо прямого
измерения могут быть сделаны косвенные вычисления. Например,
- для постоянной скорости и уровня полета, тяга = перетащить
- для ускоренного полета уровня F_net = ускорение Mass * и т.
д.
2
Новая или измененная тяга двигателя на испытательном стенде
изготовителя измеряется против тензодатчика или измерителя тяги при
заданных оборотах, TGT (температура турбинного газа), расхода
топлива и EPR (коэффициент давления в двигателе).
Когда сертифицированный двигатель установлен на планете и на
грунте, после учета местных атмосферных условий, потерь всасывания
и струйной трубы, максимальный выброс ЭПР или тяги, а также TGT и
расход топлива могут быть перекрестно проверены.
В испытательном полете, учитывая поправочные коэффициенты для
высоты и скорости и т. Д., По сравнению с известными параметрами
EPR, TGT, RPM и расхода топлива, двигатель, как видно, обеспечивает
требуемую производительность. Если параметры двигателя верны, но
производительность самолета (то есть скорость и скорость набора
высоты) низка, то подозревайте, что вес самолета и/или
сопротивление (лоскут, двери, панели и т. Д. Плохо подходят) как
возможные виновники. Нечестно ожидать, что двигатель подтолкнет
грязный тяжелый самолет на этот большой холм в жаркий день?
1
Из всех искусств
Из всех искусств для нас важнейшим является кино, любил поговаривать Ильич. Для ракетомоделистов-любителей середины прошлого века — тоже. Ибо кино- и фотопленка того времени делалась из целлулоида. Туго свернутая в небольшой рулончик и засунутая в бумажную трубку со стабилизаторами, она позволяла взлететь простейшей ракете на высоту пятиэтажного дома. У таких двигателей было два главных недостатка: первый — небольшая мощность и, как следствие, высота полета; второй — невозобновимость запасов целлулоидной пленки. Например, фотоархива моего отца хватило всего на пару десятков запусков. Сейчас, кстати, жалко.
Максимальная высота при фиксированном суммарном импульсе двигателя достигалась при кратковременном четырехкратном скачке мощности на старте и дальнейшем переходе на ровную среднюю тягу. Скачок тяги достигался формированием отверстия в топливном заряде.
Второй вариант двигателей собирался, так сказать, из отходов деятельности Советской армии. Дело в том, что при стрельбах на артиллерийских полигонах (а один из них как раз находился неподалеку от нас) метательный заряд при выстреле выгорает не до конца. И если хорошенько поискать в траве перед позициями, можно было найти довольно много трубчатого пороха. Самая несложная ракета получалась в результате простого заворачивания такой трубки в обычную фольгу от шоколадки и поджигания с одного конца. Летала такая ракета, правда, невысоко и непредсказуемо, зато весело. Мощный двигатель получался при собирании длинных трубок в пакет и заталкивании их в картонный корпус. Из обожженной глины изготавливалось и примитивное сопло. Работал такой двигатель очень эффектно, поднимал ракету довольно высоко, но часто взрывался. К тому же на артиллерийский полигон не особо походишь.
Третий вариант представлял собой попытку почти промышленного изготовления ракетомодельного двигателя на самодельном дымном порохе. Делали его из калиевой селитры, серы и активированного угля (он постоянно заклинивал родительскую кофемолку, на которой я его измельчал в пыль). Признаюсь честно, мои пороховые двигатели работали с перебоями, поднимая ракеты всего на пару десятков метров. Причину я узнал лишь пару дней назад — запрессовывать двигатели нужно было не молотком в квартире, а школьным прессом в лаборатории. Но кто бы, спрашивается, меня в седьмом классе пустил запрессовывать ракетные двигатели?!
Последние из МРД Два редчайших двигателя, которые удалось достать «ПМ»: МРД 2, 5−3-6 и МРД 20−10−4. Из советских запасов ракетомодельной секции в Детском доме творчества на Воробьевых горах.
Минимизация
Ракета должна нести все свое топливо. Поэтому масса несгоревшего продовольствия обязана быть ускорена вместе с самим устройством. Минимизация величины топлива, необходимого для достижения данного толчка, имеет решающее значение для создания эффективных ракет.
Формула удельного импульса Циолковского показывает, что для ракеты с заданной пустой массой и определенным количеством топлива, общее изменение скорости можно достичь пропорционально эффективной стремительности истечения.
Космический корабль без движителя передвигается по орбите, определяемой его траекторией и любым гравитационным полем. Отклонения от соответствующего шаблона скорости (они называются Δ v) достигаются путем устремленности выхлопных газов по массе в направлении, противоположном необходимым изменениям.
Роль мощности и крутящего момента двигателя
Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.
Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:
- Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
- Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
- Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
- Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
- При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.
Мотор по патенту Локведа
Устройство можно соорудить любого размера, если строго соблюдать необходимые пропорции. Реактивный двигатель, своими руками сделанный, не будет иметь движущихся частей. Он способен функционировать на любом виде топлива, если будет предусмотрено приспособление для его испарения до входа в камеру сгорания. Однако старт производят на газе, так как этот вид топлива намного удобнее других. Соорудить конструкцию просто, да и денег уйдет не так уж много. Но надо приготовиться к тому, что работать будет с большим шумом реактивный двигатель.
Своими руками устанавливается и испаряющий распылитель для жидкого топлива. Его помещают на конец металлической трубы, через которую пропан поступает в камеру сгорания. Однако если планируется применять только газ, то это приспособление устанавливать необязательно. Можно пропан просто запускать через трубку 4 мм диаметром. Ее прикрепляют к камере сгорания при помощи фитинга на десять миллиметров. Иногда предусматривают также разные трубки для пропана, керосина и дизельного топлива.
На старте газ поступает в камеру сгорания, и при возникновении первой искры двигатель запускается. Баллоны сегодня приобрести нетрудно. Удобным является, например, имеющий одиннадцать килограмм топлива. Если предполагается большой расход, то редуктор не обеспечит необходимым потоком. Поэтому в таких случаях устанавливают просто игольчатый клапан. Баллон при этом нельзя опустошать до конца. Тогда в трубке не произойдет возгорания.
Чтобы установить свечу для искры, в камере сгорания нужно предусмотреть специальное отверстие. Его можно изготовить при помощи токарного станка. Корпус выполняют из нержавеющей стали.
Детонационный двигатель
Между тем в России специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» занимается разработкой спинового детонационного жидкостного ракетного двигателя, работающего на топливной паре кислород-керосин. О первом успешном испытании такой силовой установки было объявлено 26 августа текущего года. Следует отметить, что это первый в мире спиновый детонационный двигатель, разрабатываемый специально для использования на ракетах-носителях. Аналогичную силовую установку сегодня создают и в США, однако ее планируется использовать в качестве более экономичной и эффективной замены газотурбинных двигателей на кораблях ВМС.Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Впервые ими занялись еще в Германии в 1940-е годы. Правда, тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1». В силовых установках таких ракет топливо подавалось в камеру сгорания небольшими порциями через равные промежутки времени. При этом распространение процесса горения по топливу происходило на скорости, меньшей скорости звука. Такое сгорание называется дефлаграцией, оно лежит в основе работы всех обычных двигателей внутреннего сгорания.В детонационном двигателе фронт горения распространяется по топливной смеси быстрее скорости звука. Такой процесс горения называется детонацией. Детонационные двигатели сегодня делятся на два типа: импульсные и спиновые. Последние иногда называют ротационными. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей: топливо и окислитель подаются в камеру сгорания с высокой частотой через равные промежутки времени. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. Благодаря детонации топливо сгорает полнее, выделяя большее количество энергии, чем при дефлаграции.
В перспективе гонку на рынке космических запусков выиграет тот, кто сможет как можно дешевле выводить на орбиту как можно больше грузов. Некоторые компании полагают, что благодаря использованию новых технологий стоимость вывода грузов на низкую орбиту можно будет опустить ниже тысячи долларов за килограмм и ниже десяти тысяч за килограмм при запуске на геопереходную орбиту. Правда, когда именно такое будет возможно, пока неясно. По самым смелым оценкам, новые ракетные двигатели будут использоваться на ракетах-носителях с середины 2020-х годов.
Василий Сычёв
Тяга реактивного двигателя самолета
Сила тяги двигателя, или его движущая сила, равноценна всем силам давления воздуха на внутреннюю поверхность силовой установки. Тяга некоторых видов реактивных двигателей зависит от скорости и высоты полета. Для вычисления силы тяги реактивного двигателя часто приходится определять тягу на конкретной высоте, у земли, на взлете и во время какой-либо скорости. Для ЖРД сила тяги равноценна произведению массы исходящих газов на скорость, с которой они вылетают из сопла двигателя.
Для ВРД (воздушно-реактивный двигатель) сила тяги измеряется как результат массы газов на разность скоростей, а именно скорости воздушной струи, выходящей из сопла двигателя, и скорости поступающего воздуха в двигатель. Проще говоря, данная скорость уравнивается к скорости полета самолета с реактивным двигателем. Тяга ВРД обычно измеряется в тоннах или килограммах. Важным качественным показателем ВРД является его удельная тяга. Для турбореактивного двигателя – тяга, отнесенная к конкретной единице веса воздуха, который проходит через двигатель в секунду. Этот показатель позволяет понять, насколько высока эффективность эксплуатации воздуха в двигателе для образования тяги. Удельная тяга измеряется в килограммах тяги на 1 кг воздуха, расходуемого за секунду. В некоторых случаях применяется другой показатель, который также называется удельной тягой, показывающей отношение количества топлива, которое расходуется, к силе тяги за секунду. Естественно, что чем выше показатель удельной тяги ВРД, тем меньше поперечный вес и размеры самого двигателя.
Показатель полетной или тяговой мощности – это сила, которая задействует реактивный двигатель при конкретной скорости полета. Как правило, измеряется в лошадиных силах. Величина лобовой тяги говорит о степени конструктивного оптимума реактивного двигателя. Лобовая тяга – это отношение наибольшего показателя площади поперечного сечения к тяге. Лобовая тяга равна тяге, в кг поделенной на площадь в метрах квадратных.
В мировой авиации наиболее ценится тот двигатель, который обладает высокой лобовой тягой.
Чем совершеннее ВРД в конструктивном отношении, тем меньший показатель его удельного веса, а именно общий вес двигателя вместе с приборами и обслуживающими агрегатами, поделенный на величину собственной тяги.
Реактивные двигатели, как и тепловые вообще, отличаются друг от друга не только по мощности, весу, тяге и другим показателям. При оценивании ВРД огромную роль играют параметры, которые зависят от собственной экономичности, а именно от КПД (коэффициент полезного действия). Среди данных показателей главным считается удаленный расход топлива на конкретную единицу тяги. Он выражается в килограммах топлива, которое расходуется за час на образование одного килограмма тяги.